• Title/Summary/Keyword: 경량기포혼합토

Search Result 25, Processing Time 0.03 seconds

Long-Termed Behavior and Durability of Foam-Mixed Concrete Containing Porous Aggregates (다공성 골재를 함유한 기포혼합콘크리트의 장기거동 및 내구특성)

  • Kim, Sang Chel;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.113-123
    • /
    • 2012
  • The technology developed for the decrease of applying loads and self-weight of a structure is to improve conventional Foam Cement Banking Method (FCB) by applying mixed slurry of bottom ash, cement and foams. Since the foam-mixed concrete, which is a major material of the Bottom ash-mixed Light weight concrete Banking method (BLB) developed, contains mineral admixture such as cement, the behavior shows time-dependent deformation and deterioration of durability due to environmental exposure. Thus, this study is subject to figure out the characteristics of long-termed behavior and durability of the developed method by carrying out experiments for schemed parameters, which are considered to be factors affecting mainly on concrete's characteristics from mechanical analysis. As results of tests, it was found that the developed concrete offers higher resistance than conventional foamed concrete in terms of long-termed behaviors associated with drying shrinkage and creep, and durability problems of freeze-thaw and carbonation processes, especially with addition of bottom ash.

A Study on the Economic Analysis of Box Mechanical Behavior Materials Using LCC Techniques (LCC를 고려한 BOX구조물 뒷채움 재료의 경제성 분석에 관한 연구)

  • Lee, Sang-Hee;Kim, Soo-Yong;Park, Young-Min
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • The lightweight bubble mixture soil are lightweight soft ground rear, which is used with the material filling. However, comparing with the general soil, it is not valuably useful from domestic. The utilization of the general soil which initial public corporation holds mainly few. The overlay method of general soil decreasing the number of layers increases according to use research study. From the research which consequently, BOX mechanical behavior materials rear executed LCC analyses the general soil which is a material filling and lightweight bubble mixture soil, discussed two kind alternatives and presents the analysis will be able to support the decision-making which is rational from the economics. The expense, which results from the resultant of lightweight bubble mixture soil maintenance, was fewer and was then analyzed with the fact that, will be able to secure an economical efficiency within 6 years.

  • PDF

Economic Analysis of Box Mechanical Behavior Materials Using LCC Analysis (LCC를 고려한 BOX구조물 뒷채움 재료의 경제성 분석)

  • Park, Young-Min;Kim, Soo-Yong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.40-47
    • /
    • 2009
  • The lightweight bubble mixture soil is used for soft ground rear-filling material by applying reduced weight on structure. However, comparing with the general soil, it is not applied in domestic because of initial phase cost of construction. General soil, which has lower initial phase cost is usually used for rear-filling, but the use of overlay method of general soil is reduced as the number of layers increases. Especially box structure placed in soft ground or the overlay method when gap near pier rear-filling can be replaced with temporary alternative method, however, it can't be a solution to gap by generation of extra weight of thickness of overlaying. Therefore, execute LCC analysis of two alternative-the general and the lightweight bubble mixture soils, which are rear-filling material of box structure- and present economical analysis in order to make resonable decision from the economics. As a result, although the lightweight bubble mixture soil takes higher initial phase cost than the general soil, it has been analyzed to procure economical efficiency by having less cost of maintenance.

Characteristics of the Expanded Road Embankment Constructed by Lightweight Air-Mixed Soils for a Short-Term (경랑기포혼합토로 단기간에 시공된 확폭도로성토체의 특성)

  • Hwang, Joong Ho;Ahn, Young Kyun;Lee, Young-Jun;Kim, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.377-386
    • /
    • 2010
  • This study was conducted to find out the characteristics of the expanded road embankment constructed by the lightweight air-mixed soil (slurry density $10kN/m^3$) for a short-term without any ground improvement. Compression strength, capillary rise height of the lightweight air-mixed soil and settlement behavior of soft ground were studied. Compression strengths of the specimens sampled at the site after 1 and 5 months of construction were all satisfied the required strength 500 kPa. However, it was not convinced the homogeneity construction, because the values of strength were depending on the sampled location. Also, strength difference between laboratory and site specimens were found about 19%, and thus it should be considered for mixing design. Capillary rise reached about 20 cm for 70 hours because of a numerous tiny pores existed inside the lightweight air-mixed soil. Relationship between settlement and time of the soft ground placed underneath the expanded embankment was estimated by using the measured data and back analysis technique. The current average consolidation ratio and the final settlement after 120 months later were estimated about 32% and 4.5cm, respectively. This settlement is much less value than the allowable settlement 10cm for this structure.

Effect of Mixing Time by Mix Truck on the Physical Properties of Lightweight Air-mixed Soil (믹스트럭 내 교반시간이 경량기포혼합토의 물성에 미치는 영향)

  • Kim, Taehyo;Kim, Nayoung;Im, Jongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.15-25
    • /
    • 2015
  • As the physical and mechanical properties of lightweight air-mixed soil change in the procedure of transportation of mix truck, it is necessary to assure whether the properties during construction satisfy those in design. In this study, variations of properties of mixed soil after transportation by mix truck are proved by field test. Lightweight air-mixed soil used field test the unit weight of $9.0{\pm}1.0kN/m^3$, the flow value of $190{\pm}20mm$ was produced. To analyze variations of properties of mixed soil the unit weight and flow value of the sample before and after transport was measured unconfined compressive strength tests were performed. Mixing time was 19~175 minutes diversified. As the test results, it is known that the density, the flow value and the unconfined compressive strength of lightweight air-mixed soil change by transportation, but these values satisfy the specifications of material of air-mixed soil. After transportation the average value of the unit weight and flow value change in the flow of the $(+)0.10kN/m^3$, 4.8 mm respectively, the average change in the unit weight and the flow value due to the mixing time was constant. And unconfined compressive strength of 28-day specimen increases from 20 to $150kN/m^2$. But, these values do not have some clear relationship with the transportation time within 175 minutes which is longest test time. Consequently, Within 175 minutes the changes of properties by transportation are too small to show some problems in the construction field.

Compressive Strength Characteristics of Light-weight Air Foamed Soil Using Dredged Silty Soils (준설 실트질 점토를 이용한 경량기포혼합토의 압축강도 특성)

  • Kim, Donggyu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2017
  • In this research, laboratory tests were carried out to investigate the engineering properties of Light-Weight Air Foamed Soil (LWAS) based on silty clays with the animal foaming agent and cement. LWAS has been used as an embankment material over soft ground for road and side extension of the existing road. In field, unit weight and flow value is measured right after producing in mixing plant in order to control the quality of LWAS, and laboratory tests are carried out to confirm the quality through compressive strength of LWAS as well. In this research, direct estimation of the specification requirement of strength using flow values in field is the main purpose of the study together with other characteristics. From the test results, it can be seen that flow values increase with the initial water content and unit weight increases with the depth due to material segregation. Compared to the upper specimen, lower end of 60 cm specimen shows about 2 times higher compressive strength. Relationship between flow values and normalized factor presented by Yoon & Kim (2004) was presented. With that relationship, compressive strength can be predicted from flow values in field. From the relationship, the normalized factor was calculated. Thereafter calculated compressive strengths according to the flow values were compared to measured strengths in the laboratory. The higher the initial water content of the dredged soil has, the better relationship between predicted and measured shows. Therefore it is necessary to predict the compressive strength in advance through the relationship between the flow value and the normalized factor to reflect it in the design stage.

Determination of Mix Design and Target Strength for Lightweight Soils using Recycled material (폐기물을 첨가한 경량혼합토의 배합설계와 목표강도 결정)

  • Yoon, Gil-Lim;Bae, Yoon-Shin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.468-474
    • /
    • 2010
  • 최근 국내에서 연약지반개량을 위하여 적극 도입되기 시작한 차세대 지반처리기술인 경량혼합토공법의 배합설계에 대한 고찰을 하였다. 경량혼합토는 건설잔토나 준설토 및 현장에서 발생하는 점토나 실트질 흙을 사토처리 하지 않고 현장에서 유용할 수 있는 매우 경제적이고 환경적인 공법으로서 일본에서는 지난 10여년에 연간 수백만톤의 경량혼합토를 생산하여 건설현장에 적용한 실적을 보유하고 있다. 특히 폐자원(폐타이어가루, 왕겨)을 경량혼합토에 첨가하여 건설재료 재활용을 위한 역학적 실험을 수행하였다. 본 연구에서는 경량혼합토를 제작하기 위해 필요한 배합설계변수인 원료토의 중량, 함수비 및 기포재와 첨가할 물의 양, 그리고 강도를 발현하기 위하여 필요한 고화재로서 시멘트첨가량에 대한 최적의 배합설계에 대한 분석을 하였다. 지금까지 제안된 시멘트함유량은 초기의 경량혼합토 목표강도가 주어지면 원료토의 조건에 따라 원하는 비중과 강도를 토대로 적절하게 현장에 적합하게 결정하는 단계에 있으나 일부 현장에서 지나친 목표강도 설정으로 과대한 시멘트를 사용하는 사례가 많아 국가적으로 막대한 손실을 초래하고 있다. 본 논문에서는 경량혼합토의 목표강도을 분석하고 그에 따른 최적의 시멘트함유량을 제시하고자 한다.

  • PDF

Analysis of determining the mix ratio and strength for lightweight soils (경량혼합토 배합비율과 강도분석)

  • Bae, Yoon-Shin;Yoon, Gil-Lim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.708-711
    • /
    • 2010
  • 본 연구에서는 경량혼합토 배합설계변수인 원료토의 중량, 함수비 및 기포재와 첨가할 물의 양, 그리고 강도를 발현하기 위하여 필요한 고화재로서 시멘트첨가량에 대한 최적의 배합설계에 대한 분석을 하였다. 분석을 위해 폐타이어가루와 왕겨를 각각 혼합한 경량혼합토의 압축강도를 비교 분석하였다. 왕겨혼합토는 함유량 3%에서 최대강도가 발현되는 반면 폐타이어혼합토의 경우 함유량 6%에서 최대강도를 보여주었다. 현장에서 설계기준을 만족하기 위한 시멘트비와 폐성분을 적절히 혼합하면 합리적이고 경제적인 배합비를 산출할 수 있다.

  • PDF

Analysis of Compressive Strength of Lightweight Air-mixed Soil According to the Properties of Soil (원료토의 특성에 따른 경량기포혼합토의 압축강도 영향인자 분석)

  • Song, Jun-Ho;Im, Jong-Chul;Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.157-166
    • /
    • 2008
  • To investigate the relationship between compressive strength ($q_u$) of Lightweight Air-mixed soil (LAS) and its physical deformation coefficient ($E_{50}$), a series of unconfined compressive tests have been performed on specimens of LAS according to various dredged soil types by percentage of sand, silt and clay. From the results it was found that the cement content ($C_i$) and unit weight (${\gamma}_m$) are most influence factors on strength, and percentage of sand, silt, clay by grain size analysis (KS F2302) have more effect on compressive strength than other physical properties of soil. It was also found that the rate of strength (a) increases with curing time, but it reduces with the increase of percentage of clay ($C_%$).

Analysis of Strength Characteristics for Lightweight Soils Using Recycled Material (폐기물을 첨가한 경량혼합토의 강도특성 분석)

  • Bae, Yoon-Shin
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.204-212
    • /
    • 2012
  • Lightweight soils are very economical and environment friendly materials that are valuable in field without wasting construction materials, dredged soils and clay/ silty soils during construction. Recently, the research of lightweight soils mixed with recycled material (recycled tire powder, rice husks) have been investigated. In this study the mix design factors (i.e., weight of soil, water content, foaming agent and added water) were analyzed and optimized mix design was suggested using cement content for revealing strength. For the analysis the stress-strain behavior, strength with respect to time, and experimental strength for the component of recycled material were analyzed. Finally, target strength was determined to calculate reasonable and economical mix ratio and the optimized cement content was suggested.