• Title/Summary/Keyword: 경계 조건 차이

Search Result 231, Processing Time 0.03 seconds

A Study on Flow Distribution in a Clean Room with Multiple Exits (다수의 출구를 가지는 크린룸 내부의 기류분포에 관한 연구)

  • Lee, Jae-Heon;Lee, Sie-Un;Kim, Sukhyun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.418-425
    • /
    • 1988
  • Since conventional computer program is workable only with velocity boundary condition, in practical fluid passage such as clean room which usually have wide inlets and outlets, it is not easy to measure velocity itself because of its vector property. Furthermore a certain assumption of velocity at boundaries may lead to physically unreasonable results. From this motivation, we have developed a computer program to predict whole flow field imposed on pressure-based boundary condition which can be measured by relatively simple method. The only additional velocity boundary condition that should be imposed on to make the problem unique, are no slip condition at all walls and zero cross stream velocity at inlet. The result of present study was compared with that by Bernoulli equation being used practically. They were coincident well each other within 5%, therefore the validity of the present method is proved. In the present work, the flow field in a clean room subject to pressure-based boundary conditions at an inlet and two exits was predicted numerically. The pressure difference between the inlet and the left exit which keeps relatively low pressure among two exits is fixed as 150[Pa] and the pressure at the right exit is varied from zero to 150[Pa] by the increment of 25[Pa]. For each cases the flow characteristics in the clean room, the velocity profile at the inlet, and the flow rate through the two exits was predicted. The flow rate through the right exit imposed on relatively higher pressure than the left exit decreased linearly according to the increase of pressure of the right exit. When the pressure of the right exit is increased enough to cause back flow at the exit, the flow rate is rapidly decreased.

  • PDF

A Study on the Improvement of Atmospheric Dispersion Modelling in Coastal Areas under Low Wind Conditions (임해지역 저풍속 조건에서의 대기확산모델링 개선을 위한 연구)

  • 박옥현;이상훈;천성남
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.172-174
    • /
    • 1999
  • 이전의 연구에서는 중정도에서 강한 풍속까지의 대기경계층 난류구조는 잘 해석하였으나, 저풍속 안정한 대기조건일 때 난류구조에 대해서는 아직까지 잘 알려져 있지 않다. 또한 육지와 거대한 수계의 열적 특성차이를 갖는 임해지역에서의 확산은 Praire지역을 비롯한 내륙지역과는 다른 특성을 갖는다. 임해지역에서는 오염원으로부터 중단거리에서 저풍속시에 지표상에 고농도가 발생하는 오염물질확산현상이 잘 발생한다.(중략)

  • PDF

Scattering of Oblique Waves by an Inanite Flexible Membrane Breakwater (유연막 방파제에 의한 경사파의 산란)

  • 조일형;홍석원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.219-226
    • /
    • 1995
  • The wave interaction with flexible membrane such as PVC and PU fabrics is studied to prove its applicability to portable breakwaters. To analyze the wave deformation due to the flexible membrane. eigen-function expansion method is employed. The fluid domain is seperated into two regions. The velocity potential in each regions and the deformation of membrane are coupled by the body boundary conditions. Herein the deformation of membrane is obtained by solving the membrane equation. As a numerical example, transmission and reflection coefficients according to the change of several design parameters such as tensile force. mooring line stiffness and membrane height are investigated. It is found that the efficiency of flexible membrane breakwater is significantly affected by these design parameters. The angle of incident wave is an important role to the performance of breakwater. Finally we conclude that flexible membrane can be used to engineering material for the future breakwaters.

  • PDF

Impact of Different Boundary Conditions in Generating g-function on the Sizing of Ground Heat Exchangers (경계 조건에 따른 지열 응답 함수의 차이가 수직형 지열 교환기 길이 산정에 미치는 영향)

  • Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.263-268
    • /
    • 2014
  • Eskilson's g-function, a well-known geothermal heat response factor, is widely used for sizing of the ground heat exchangers. Unlike the Eskilson's original model that uses common temperature boundaries for all boreholes and along the borehole height, an analytical-solution-based g-function uses a uniform heat transfer rate over the height with variable heat transfer rates for respective boreholes. To evaluate the impact of such a boundary difference on g-function and the design length, a simple case study was carried out on the cooling-dominant commercial buildings. The results show that the design lengths given by the boundary of uniform heat transfer rates are longer than those given by Eskilson's boundary for all cases tested. The difference in length is more important when the bore field is composed of more boreholes with shorter length of each borehole.

Comparison of Flood inundations Considering the Inland Flood (내수침수의 영향을 고려한 홍수범람 비교연구)

  • Baek, Hyung-Jo;Lee, Hyun-Seok;Yi, Yong-Kon;Koh, Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1206-1210
    • /
    • 2006
  • 본 연구에서는 천수방정식을 지배방정식으로 하고, 유한 체적법에 기반을 둔 FLUMEN 수치모형을 이용하여 홍수범람 모의를 수행하였다. 본 연구의 대상유역은 평택시 내에 있는 상수침수지역인 안성천과 통복천의 합류지점을 선정하였다. 대상유역에서 외수침수의 조건으로 범람이 되었을때와 도시유출(urban runoff)경계조건을 가미하여 내수침수로 인해 도시내 침수가 발생했을 시에 모의된 침수결과를 비교.검토하였다. 또한 도시유출로 인한 내수침수시에 도시내 배수펌프의 원활한 작동유무의 영향을 모의하였다. 모의된 결과를 살펴보면, 외수침수만을 고려하여 모의된 결과와 내수침수 조건을 가미한 모형의 결과는 도시내 침수면적과 침수심에서 확연한 차이가 나타남을 알 수 있었다. 또한 배수펌프의 유무에 따라 도시내의 침수심 부분에 있어서 많은 차이를 보임을 알 수 있었다. 본 모형의 결과는 향후 실제 지형에서의 홍수 피해를 예측하는 경우 하천 범람과 더불어 근래의 급격한 도시화에 따른 도시유출을 동시에 감안하여 그 피해를 최소화 할 수 있는 기초자료로 이용되어 질 수 있을 것으로 사료된다.

  • PDF

Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model (3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구)

  • Kwon, Sun-Yong;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.51-62
    • /
    • 2016
  • Parametric studies for various site conditions by using 3d numerical model were carried out in order to estimate dynamic behavior of soil-pile-structure system in dry soil deposits. Proposed model was analyzed in time domain using FLAC3D which is commercial finite difference code to properly simulate nonlinear response of soil under strong earthquake. Mohr-Coulomb criterion was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling was used as boundary condition to reduce analysis time. Also, initial shear modulus and yield depth were appropriately determined for accurate simulation of system's nonlinear behavior. Parametric study was performed by varying weight of superstructure, pile length, pile head fixity, soil relative density with proposed numerical model. From the results of parametric study, it is identified that inertial force induced by superstructure is dominant on dynamic behavior of soil-pile-structure system and effect of kinematic force induced by soil movement was relatively small. Difference in dynamic behavior according to the pile length and pile head fixity was also numerically investigated.

A Functional Assessment of Nakdong River Barrage for Preventing Salinity Intrusion Using EFDC Model (EFDC를 이용한 낙동강 하구둑 염수침입방지 기능 평가)

  • Son, Yong-Ku;Jeong, Sang-Man;Cha, Kee-Uk;Hur, Young-Teck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2018-2022
    • /
    • 2009
  • 본 연구에서는 낙동강 하구둑의 주요 기능 중에서 용수공급에 지장을 초래하는 염수침입 및 염해피해 방지 효과에 대하여 재평가 하고자 한다. 평가범위는 수치모형을 이용하여 낙동강 하구둑 건설 이전의 지형상황을 재현하고, 하구둑이 없는 조건 하에서 상류유입유량을 변화시키며 외해를 통한 염분 침입 가능범위를 수치모의 함으로서 하구둑의 효과를 간접적으로 평가하였다. 연구에 사용된 수치모형인 EFDC 모형 입력자료로 낙동강 하류부 및 외해 수역에 대한 3차원 지형도를 작성하였고. 평면 직교곡선격자망을 이용하여 대상 지역을 분할하였다. 초기조건으로 전 수역을 담수(염도 0.0psu)로 가정한 상태에서 하류단 경계에 실측 조위 및 해수조건(염도 33psu)을 적용하고 상류단에는 $50m^3/sec$를 적용하여 약 20일간 수행된 결과를 사용하였다. 상류유입유량을 $10^{\sim}250m^3/sec$의 범위로 변화시키고, 하류단 경계조건으로 조위를 적용하여 수치모의를 수행한 결과 염수침입현상에 제일 큰 영향을 미치는 요소는 상류로부터 유입하는 유량인 것으로 나타났다. 그 이외에 담수와 해수의 밀도 차이에 인한 밀도류형성 및 조석에 의한 염수의 밀어올림현상이 하류에서 상류로 염수가 침입하는데 다소의 영향이 있었다. 유입유량이 $250m^3/sec$에서 $10m^3/sec$로 감소할 경우 염분농도 1psu의 도달범위는 11km에서 50km정도로 증가하였다.

  • PDF

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part I: Over-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part I: 과환기화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.31-39
    • /
    • 2013
  • The Fire Dynamics Simulator (FDS) has been applied to simulate a full-scale pool fire in well-confined and mechanically ventilated multi-compartments representative of nuclear power plant. The predictive performance of FDS was evaluated through a comparison of the numerical data with experimental data obtained by the OECD/NEA PRISME project. To identify clearly the FDS results regarding to the user-dependence in the process of FDS implementation except for the intrinsic limitation of FDS such as simple combustion model, only the over-ventilated fire condition was chosen. In particular, the importance of accurate boundary conditions (B.C.) in mechanically ventilated system were discussed in details. It was known from FDS results that the B.C. on inlet and outlet vents did significantly affect the thermal and chemical characteristics inside the compartments. Finally, it was confirmed that the FDS imposed an accurate ventilation B.C. provided qualitatively good agreement with temperatures, heat fluxes and concentrations measured inside the nuclear-type multi-compartments.

Assessment of Surface Boundary Conditions for Predicting Ground Temperature Distribution (지중온도 변화 예측을 위한 지표면 경계조건 검토)

  • Jang, Changkyu;Choi, Changho;Lee, Chulho;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.75-84
    • /
    • 2013
  • Soil freezing is a phenomenon arising due to temperature difference between atmosphere and ground, and physical properties of soils vary upon the phase change of soil void from liquid to solid (ice). A heat-transfer mechanism for this case can be explained by the conduction in soil layers and the convection on ground surface. Accordingly, the evaluation of proper thermal properties of soils and the convective condition of ground surface is an important task for understanding freezing phenomenon. To describe convection on ground surface, simplified coefficient methods can be applied to deal with various conditions, such as atmospheric temperature, surface vegetation conditions, and soil constituents. In this study, two methods such as n-factor and convection coefficient for the convective ground surface boundary were applied within a commercial numerical program (TEMP/W) for modeling soil freezing phenomenon. Furthermore, the numerical results were compared to laboratory testing results. In the series of the comparison results, the convection coefficient is more appropriate than n-factor method to model the convective boundary condition.

Propagation of surface polaritons at the interface of metal and left-handed metamaterial (금속과 왼손잡이 메타-물질의 경계면에서 형성되는 표면 폴라리톤의 전파 특성)

  • 윤재웅;송석호;오차환;김필수
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • At the interface of two materials with frequency-dependent material-parameters of permittivity and permeability, there may exist two kinds of surface polaritons: surface electric-polaritons(SEPs) and surface magnetic-polaritons(SMPs). Possible combinations of the material-parameters to support propagation of the two surface polaritons are suggested at the interface between metals and metamaterials such as a left-handed material. Dispersion relations are also derived in order to characterize frequency dependence of propagation of the SEP and SMP. It is found that only one propagation mode of SEP or SMP is allowed at a given set of four material parameters, and that counter-propagation of the phase and group velocities of the propagation mode can be observed even in the case when there are no double negative(or, negative-index) materials. Physical origin of the counter-propagation of the group velocity is proposed by evaluating the ratio of two electromagnetic-energy densities of a surface polariton propagating along within the two interface media, and it is confirmed by the dispersion relations.