• Title/Summary/Keyword: 경계 분할

Search Result 789, Processing Time 0.026 seconds

필지경계점 중심의 경계점등록부 작성 방안 (A Study on the Framing Plan of Boundary Point Record Book Based on Parcel Boundary Point)

  • 김준현;권기욱
    • 한국측량학회지
    • /
    • 제32권spc4_2호
    • /
    • pp.375-386
    • /
    • 2014
  • 본 연구에서는 지적재조사사업의 완료에 따라 작성할 경계점등록부의 구성방안에 대해 기존의 경계점좌표등록부, 경계점표지등록부, 지상경계점등록부에서 나타난 문제점을 검토하고 이를 바탕으로 경계점의 등록과 관리를 위한 필지경계점 중심의 경계점등록부 작성방안을 제시하였다. 도출된 결과를 요약하면 다음과 같다. 첫째, 3개의 경계점 관련 등록부를 통합하여 관리함으로써 경계점 위치 설명도가 없는 지역에서도 기준점 현황을 바로 확인할 수 있어 신속한 측량이 이루어질 수 있다. 둘째, 일필지 단위의 필지중심이 아닌 필지경계점 중심의 경계점등록부를 작성함으로써 경계점의 연혁관리가 용이하고 경계점의 생성, 이기, 소멸 등에 있어 경계점의 지속적인 관리가 가능하다. 셋째, 경계점 위치 설명도는 토지분할 시점에 작성을 하게 되지만 토지분할의 목적이 주로 건물 신축이므로 건물 준공시점에 경계점 표시변경 신청으로 지형지물과 일치하는 경계점 위치 설명도를 유지할 수 있다.

칼라 영상에서의 중심 객체 추출에 관한 연구 (A Study on Extraction of Central Objects in Color Images)

  • 김성영;박창민;권규복;김민환
    • 한국멀티미디어학회논문지
    • /
    • 제5권6호
    • /
    • pp.616-624
    • /
    • 2002
  • 본 논문에서는 영상에 포함된 중심 객체를 추출하는 방법에 대해 제시한다. 중심 객체는 촬영의 중심이 되어 영상의 중앙 부분에 비교적 큰 면적을 차지하는 객체로 정의하는데 영상 내용에 대한 중요한 정보를 제공한다. 중심 객체 추출을 위해 우선 입력 영상에 대해 해상도를 줄여가며 영상 분할하고 분할된 결과에 대해 계층적 영역 병합을 수행함으로써 객체가 많은 수의 영역으로 세분화되어 영상 분할되는 것을 방지할 수 있도록 하였다. 분할된 각 영역은 영상의 경계와 접하는 경계 영역과 그 외의 비경계 영역으로 분류하였다. 비경계 영역은 중심 객체에 해당될 가능성이 있는 영역으로써, 이들 중에서 영상 중심 부근에서 가장 큰 크기를 차지하는 영역이 핵심객체영역으로 선택된다. 또한 경계 영역 중에서 영상의 네 모서리에 인접하는 영역은 핵심배경영역으로 선택되어 핵심객체영역과 함께 중심 객체 추출에 이용된다. 각 비경계 영역은 핵심 배경영역및 핵심객체영역과 칼라 분포 유사도출 비교하여 배경영역과 전경영역으로 분류된다. 핵심객체영역 및 핵심객체영역과 연결성을 가지는 전경영역이 최종 중심 객체로 선택된다. 본 논문에서 제안된 방법은 비교적 복잡한 배경을 갖는 영상에 대해서도 어느 정도 만족할 만한 결과를 얻을 수 있었다.

  • PDF

구강구조모델과 워터쉐드를 이용한 치아영역 분할 (Tooth Region Segmentation by Oral Cavity Model and Watershed Algorithm)

  • 나승대;이기현;이정현;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제16권10호
    • /
    • pp.1135-1146
    • /
    • 2013
  • 본 논문에서는 치아에 대한 컬러영상에서 개별적인 치아영역을 분할하기 위한 새로운 방법을 제안하였다. 제안하는 알고리듬은 치아의 구조적 특징을 이용한 구강구조모델과 워터쉐드 알고리듬의 새로운 경계선 설정방법 등이 사용되었다. 먼저, 컬러영상으로부터 치아영역이 강조된 회색레벨 영상을 획득하고 치아영역 분할시 문제가 될 수 있는 불필요한 부분을 영상에서 제거하였다. 다음으로 제안한 구강구조모델을 이용한 치아영상의 영상향상을 실행하였고, 향상된 영상을 워터쉐드 알고리즘을 이용하여 개별적 치아영역을 분할하였다. 워터쉐드 알고리즘에 필요한 경계선과 시드는 최소 문턱치를 이용한 이진영상의 경계선과 국부 최대값을 적용하였다. 제안한 방법의 성능을 평가하기 위하여 기존의 방법과 제안한 방법에 대하여 비교 실험을 수행하였다. 실험 결과, 제안한 방법이 기존의 방법에 비하여 대구치영역의 검출율이 향상됨을 확인하였으며 치아를 포함한 구강 내 영역의 중복검출 등의 문제를 방지하여 치아영역 검출 성능이 향상되었음을 확인하였다.

칼라 영상 객체 분할을 이용한 게임 콘텐츠 분류 서비스 방안에 관한 연구 (A Study on Game Contents Classification Service Method using Image Region Segmentation)

  • 박창민
    • 서비스연구
    • /
    • 제5권2호
    • /
    • pp.103-110
    • /
    • 2015
  • 최근, 3D FPS 게임에서 캐릭터의 분류는 매우 중요한 문제로 떠오르고 있다. 본 연구에서는 간단한 조작으로 의미객체의 화상 영역 분할을 이용한 게임 콘텐츠 분류 방법을 제안한다. 이 방법에서는, 우선 비선형 RGB 컬러 모델과 컬러양자화 방식을 사용했다. 입력 화상은 20개 미만 양자화 된 색을 표현하고 의미 있는 적은 수의 컬러 히스토그램을 사용한다. 그리고, 적은 블록으로 분할 된 이미지는 블록 단위 컬러 히스토그램 교차로 인접 블록과의 유사도를 계산한다. 왜냐하면, 질감 및 대상 블록의 경계에 있어서, 추출 블록 경계를 제외한 나머지를 사용하기 때문이다. 게임 오브젝트는 이들 방법에 에 의해 블록 경계 영역을 설정하고 FPS 게임 플레이에 사용될 수 있다. 실험을 통해, 우리는 각각의 기능을 사용하여 분류 방법에 대해 80% 이상의 정확도를 얻을 수 있었다. 따라서, 이 특성을 이용하여 게임콘텐츠를 효율적으로 분류 할 수 있고, 이는 게임 속도와 전략적 행동에 보다 나은 결과를 초래할 것으로 예상한다.

계층적 은닉 마코프 모델을 이용한 비디오 시퀀스의 셧 경계 검출 (Shot Boundary Detection of Video Sequence Using Hierarchical Hidden Markov Models)

  • 박종현;조완현;박순영
    • 한국통신학회논문지
    • /
    • 제27권8A호
    • /
    • pp.786-795
    • /
    • 2002
  • 본 논문에서는 계층적 은닉 마코프 모델을 이용한 히스토그램과 모우멘트 기반의 동영상 장면전환 검출 방법을 제안한다. 제안된 방법은 웨이블릿 변환된 영상의 저주파 부 밴드로부터 히스토그램을 추출하며, 고주파 부 밴드로부터는 방향성 모우멘트를 추출한다. 그리고 수동적으로 분할된 비디오로부터 추출한 히스토그램 차와 모우멘트 차를 관측값으로 사용하여 은닉 마코프 모델을 학습한다. 비디오 분할 과정은 두 단계로 구성되는데, 먼저 히스토그램 기반의 은닉 마코프 모델은 입력된 비디오에 대하여 셧, 컷, 그리고 점진적인 장면전환의 3개의 범주로 분할한다. 그리고 두 번째 단계에서는 모우멘트 기반의 은닉 마코프 모델을 사용하여 점진적인 장면 전환을 더 세밀하게 페이드와 디졸브로 분할한다. 실험결과 제안된 방법은 기존의 경계값 기반의 방법보다 더 효율적으로 동영상의 셧 경계를 분할하였음을 볼 수 있었다.

고해상도 위성영상에서 추출된 건물경계의 도로방향정보 기반 선형보정 (Automated Modification of Irregular Shape of Building Edges Extracted from High Spatial Resolution Satellite Imagery Using Road Direction Information)

  • 이종열
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.173-177
    • /
    • 2006
  • 고해상도의 위성영상이 수집됨에 따라 이에서 지형지물을 자동 추출하려는 분야가 점차 중요해지고 있다. 지형지물을 수작업을 거치지 않고 추출하는 방법의 연구 중에서는 지형지물의 경계추출을 기반으로 하는 방법이 많이 이용된다. 그러나 일반적으로 추출된 지형지물 경계의 선형이 왜곡된 형태를 갖으며, 지형지물의 실제 경계의 형태와는 다소 차이가 있는 결과를 보인다. 이 연구에서는 선형이 굴곡이 있는 지형지물 중 건축물의 경계를 인접한 도로 정보를 이용하여 실제의 경계 형태에 가깝게 보정하는 방법을 검토하였다. context 정보로서 이것을 이용한다면 블록 내의 건축물의 경계를 보다 규칙적으로 정비할 수 있을 것이다. 이 연구에서는 이러한 전제를 가지고 도로로 분할된 블록 내 건축물 경계를 도로의 방향을 기반으로 보정하는 방법을 제안하였다.

  • PDF

마이크로 CT 영상에서 자동 분할을 이용한 해면뼈의 형태학적 분석 (Structural analysis of trabecular bone using Automatic Segmentation in micro-CT images)

  • 강선경;정성태
    • 한국멀티미디어학회논문지
    • /
    • 제17권3호
    • /
    • pp.342-352
    • /
    • 2014
  • 본 논문에서는 마이크로 CT 영상에서 치밀뼈와 해면뼈의 자동 분할 방법을 제안하고 분할된 해면뼈의 형태학적 분석 방법의 구현에 대해 기술한다. 제안된 분할 방법에서는 임계값을 이용하여 뼈 영역을 추출한다. 그 다음에는, 뼈의 바깥 경계선부터 안쪽 방향으로 인접한 경계선을 찾아 치밀뼈 후보 영역을 설정한다. 치밀뼈 후보 영역들 중에서 평균 픽셀값이 최대가 되는 지점을 후보 영역을 탐색하여 치밀뼈를 제거한다. 분할된 해면뼈에 BV/TV, Tb.Th, Tb.Sp, Tb.N의 네 가지 형태학적 지표자들을 계산하는 방법을 VTK(Visualization ToolKit)와 구 정합 알고리즘을 이용하여 구현하였다. 구현된 방법을 쥐의 20개 대퇴골 근위부 영상에 적용하였으며 사람이 수작업으로 분할하는 방법과 비교 실험을 수행하였다. 실험 결과 네 가지 형태학적 지표자 모두 수작업으로 분할한 경우와 자동으로 분할한 경우 3% 이내의 평균 오차율을 보여 제안된 방법은 번거로운 수작업 분할 대신 사용될 수 있음을 알 수 있었다.

적응적 형상학 Meyer 웨이브렛-CNN을 이용한 영상 에지 검출 연구 (A study on image edge detection using adaptive morphology Meyer wavelet-CNN)

  • 백영현;문성룡
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.704-709
    • /
    • 2003
  • 디지털 영상은 전송 중에 잡음과 시스템의 다른 요소에 의해 입력 요소가 왜곡된다. 이는 영상객체의 분할시 경계면의 모호함이 발생시키고, 특히 입력 영상 경계 부분은 패턴인식의 분할 및 검출 요소를 결정하기 때문에 매우 중요하다. 따라서 그 경계 부분을 정확하게 분할ㆍ검출하는 최적의 에지 검출 방법을 제안하였다. 본 논문에서는 입력 영상의 임계값에 따른 적응적 형상학을 이용하여 영상의 경계면을 부각시킨 후, 이 영상을 Meyer 웨이브렛-CNN 알고리즘에 적용한 후 최적의 에지를 검출하였다. 제안된 알고리즘이 기존의 영상 에지 검출 알고리즘인 Sobel 에지 검출과 기존의 다른 에지 검출보다 우수함을 확인하였다. 특히 에지와 에지의 부분이 가까운 곳과 완만한 곡선을 가지고 있는 부분에서 더 우수한 결과 에지를 얻을 수 있음을 시뮬레이션에 의해 확인하였다.

안정화된 역 확산 방정식을 사용한 다중해상도 영상 분할 기법 (A Multiresolution Image Segmentation Method using Stabilized Inverse Diffusion Equation)

  • 이웅희;김태희;정동석
    • 전자공학회논문지CI
    • /
    • 제41권1호
    • /
    • pp.38-46
    • /
    • 2004
  • 영상 분할은 영상을 의미 있는 영역들로 분할하기 위한 기법으로 컴퓨터 비전과 영상 처리 분야에서 중요하게 다루어져 왔다. 또한 영상 분할은 MPEG-4 비디오 표준과 같은 객체 기반 동영상 압축 분야에서도 영상에서 객체 영역을 분할하기 위해 많이 사용된다. 보다 정확한 영역 경계를 얻기 위해 Watershed 알고리즘이 많은 분야에서 적용되고 있다. 그러나 Watershed 알고리즘은 영상내의 경계선 잡음에 매우 취약하고 과분할된 결과가 나타난다고 알려져 있다. 이러한 문제를 해결하기 위해 본 논문에서는 안정화된 역 확산 방정식(Stabilized Inverse Diffusion Equation : SIDE)을 사용하여 잡음에 강인한 분할 특성을 가지면서 다중해상도 접근 방식을 통해 효율도 향상시키는 영상 분할 기법을 제안한다. 또한 본 논문에서는 인접 영역의 레이블을 사용한 영역 투영법과 영역 인접 그래프(Region Adjacency Graph : RAG)를 사용한 영역 병합법도 사용하였다. 제안된 기법을 잡음이 포함된 영상의 분할에 적용시킨 결과 과분할을 감소시키고 분할 효율이 개선됨을 확인할 수 있었다.

서포트 벡터와 뱀형상 윤곽선을 이용한 TRUS 영상의 전립선 분할 (A ProstateSegmentationofTRUS ImageusingSupport VectorsandSnake-likeContour)

  • 박재흥;서영건
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권12호
    • /
    • pp.101-109
    • /
    • 2012
  • TRUS영상에서 전립선에 대한 많은 진단과 치료 과정에서 정확한 전립선 경계의 추출이 요구된다. 여기에는 전립선 경계의 애매함, 반점, 낮은 그레이 레벨로 인하여 많은 어려움이 존재한다. 본 논문에서는 서포트 벡터와 뱀형상 윤곽선을 이용하여 TRUS영상의 자동 전립선 분할에 대한 방법을 제안한다. 이 방법은 전처리, 가버 특성 추출, 학습, 전립선 추출 단계로 구성된다. 텍스처 특성을 추출하기 위하여 가버 필터 뱅크가 사용되며, 학습 과정에서 전립선과 비전립선의 각 특성을 얻기 위하여, SVM이 사용된다. 전립선의 경계는 뱀형상 윤곽 알고리즘에 의해 추출된다. 실험 결과, 제안된 알고리즘은 인간 전문가가 추출한 경계와 비교했을 때 9.3%보다 적은 차이로 전립선 경계를 추출할 수 있었다.