• Title/Summary/Keyword: 경계층난류

Search Result 293, Processing Time 0.074 seconds

Does the Sailfish Skin Reduce the Skin Friction Like the Shark Skin? (돛새치 피부는 상어 피부처럼 마찰저항을 줄일 수 있을까?)

  • SaGong, Woong;Kim, Chul-Kyu;Choi, Sang-Ho;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.101-104
    • /
    • 2008
  • The sailfish is the fastest sea animal, reaching its maximum speed of 110km/h. On its skin, a number of V-shaped protrusions pointing downstream exist. Thus, in the present study, the possibility of reducing the skin friction using its shape is investigated in a turbulent boundary layer. We perform a parametric study by varying the height and width of the protrusion, the spanwise and streamwise spacings between adjacent ones, and their overall distribution pattern, respectively. Each protrusion induces a pair of streamwsie vortices, producing low and high shear stresses at its center and side locations, respectively. These vortices also interact with those induced from adjacent protrusions. As a result, the drag is either increased or unchanged for all the cases considered. In some cases, the skin friction itself is reduced but total drag including the form drag on the protrusions is larger than that of a smooth surface. Since the shape of present protrusions is similar to that used by Sirovich and Karlsson [Nature 388, 753 (1997)] where V-shaped protrusions pointing upstream were considered, we perform another set of experiments following their study. However, we do not obtain any drag reduction even with random distribution of those V-shaped protrusion.

  • PDF

An Experimental Study of the Near-Wake Characteristics of an Oscillating Elliptic Airfoil (진동하는 타원형 에어포일의 근접후류 특성 연구)

  • Chang, Jo-Won;Sohn, Myong-Hwan;Eun, Hee-Bong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.334-346
    • /
    • 2003
  • An experimental study was carried out to investigate near-wake characteristics of an elliptic airfoil oscillating in pitch. The airfoil was sinusoidally pitched about the half chord point between -5$^{\circ}$and +25$^{\circ}$angles of attack at the freestream velocities of 3.4 and 23.1 m/s. The corresponding Reynolds numbers based on the chord length were 3.3$\times$10$_{4}$ and 2.2$\times$10$^{5}$ , respectively. A hot-wire anemometer was used to measure the near-wake flow variables at the reduced frequency of 0.1. Ensemble-averaged velocity and turbulence intensity profiles were presented to examine the near-wake characteristics depending on the Reynolds number. The axial velocity deficit in the near-wake region tends to decrease with the increase in the Reynolds number as found in many stationary airfoil tests. Turbulence intensity in the near-wake region have a tendency to decrease with the -increase in the Reynolds number during the pitch-up motion, whereas it shows different feature during the pitch-down motion according to the separation characteristics.

Numerical Calculation of Three-Dimensional F1ow through A Transonic Compressor Rotor (천음속 압축기 동익을 지나는 삼차원 유동의 수치해석)

  • Lee, Yong-Gap;Kim, Gwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1384-1391
    • /
    • 2001
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67) and to evaluate the performances of Abid's low-Reynolds-number k-$\omega$ and Baldwin-Lomax turbulence models. A finite volume method is used fur spatial discretization. The equations are solved implicitly in time by the use of approximate factorization. The upwind difference scheme is used for inviscid terms and viscous terms are approximated with central difference. The flux-difference-splitting method of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. The results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, it is concluded that Abid'k-$\omega$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost the same.

Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in a Supersonic Nozzle(1st Report, Time-Mean Flow Characteristics) (초음속 노즐에서의 약한 수직충격파와 난류경계층의 간섭(제1편, 시간적평균 흐름의 특성))

  • Hong, Jong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.115-124
    • /
    • 1999
  • The interaction of weak normal shock wave with turbulent boundary layer in a supersonic nozzle was investigated experimentally by wall static pressure measurements and by schlieren optical observations. The lime-mean flow in the interaction region was classified into four patterns according to the ratio of the pressure $p_k$ at the first kink point in the pressure distribution of the interaction region to the pressure $p_1$ just upstream of the shock. It is shown for any flow pattern that the wall static pressure rise near the shock foot can be described by the "free interaction" which is defined by Chapman et al. The ratio of the triple point height $h_t$ of the bifurcated shock to the undisturbed boundary layer thickness ${\delta}_1$ upstream of the interaction increases with the upstream Mach number $M_1$, and for a fixed $M_1$, the normalized triple point height $h_t/{\delta}_1$ decreases with increasing ${\delta}_1/h$, where h is the duct half-height.

  • PDF

Effects of Periodic Local Forcing on a Turbulent Boundary Layer (주기적 국소교란이 난류 경계층에 미치는 영향)

  • Park, Sang-Hyun;Lee, In-Won;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.472-478
    • /
    • 2000
  • An experimental study is performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer, The local forcing is given to the boundary layer flow by means of a sinusoidally oscillating jet issuing from a thin spanwise slot at the wall. The Reynolds number based on the momentum thickness is about $Re_{\theta}=1700$. The effects of local forcing are scrutinized by altering the forcing frequency $(0.011{\leq}f^+{\leq}0.044)$. The forcing amplitude is fixed at $A_0=0.4$. It is found that a small local forcing reduces the skin friction, and this reduction increases with the forcing frequency. A phase-averaging technique is employed to capture the coherent structures. Velocity signals are decomposed into a periodic part and a fluctuating part. An organized spanwise vortical structure is generated by the local forcing. The larger reduction of skin friction for the higher forcing frequencies is attributed to the diminished adverse effect of the secondary vortex. An investigation of the random fluctuation components reveals that turbulent energy is concentrated near the center of vortical structures.

  • PDF

Relations of Near-Wall Streamwise Vortices to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류경계층내 주유동방향 와구조와 벽압력 변동간의 상관관계)

  • Seong, Hyeong-Jin;Kim, Jung-Nyeon;Choe, Jeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1068-1076
    • /
    • 2001
  • The relations between wall pressure fluctuations and near-wall streamwise vortices are investigated in a spatially-developing turbulent boundary layer using the direct numerical simulation. The power spectra and two-point correlations of wall pressure fluctuations are presented to validate the present simulation. Emphasis is placed on the identification of the correlation between wall pressure fluctuations and streamwise vorticities. It is shown that wall pressure fluctuations are directly linked with the upstream streamwise vortices in the buffer region of the turbulent boundary layer. The maximum correlation occurs with the spanwise displacement from the location of wall pressure fluctuations. The conditionally-averaged vorticity field and the quadrant analysis of Reynolds shear stress indicate that the sweep events due to streamwise vortices generate positive wall pressure fluctuations, while negative wall pressure fluctuations are created beneath the ejection events and vortex cores. The instantaneous flow field and time records reveal that the rise of high wall pressure fluctuations coincide with the passages of the upstream streamwise vortices.

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.

Study on the Generation of Turbulent Boundary Layer in Wind Tunnel and the Effect of Aspect Ratio of a Rectangular Obstacle (풍동 내 난류 경계층 생성과 육면체의 형상 변화에 따른 표면 압력 변화 연구)

  • LimM, Hee-Chang;Jeong, Tae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.791-799
    • /
    • 2008
  • We investigate the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$) placed in a deep turbulent boundary layer. The study is aiming to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the flow is normal, which is responsible for producing extreme suction pressures on the roof. The experiment includes wind tunnel work by using HWA (Hot-Wire anemometry) and pressure transducers. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of $2.4{\times}10^4$, $4.6{\times}10^4$ and $6.7{\times}10^4$, and large enough that the mean flow is effectively Reynolds number independent. The results include the measurements of the growth of the turbulent boundary layer in the wind tunnel and the surface pressure around the bodies.

Analysis of Normal Shock-Wave Oscillation in a Supersonic Diffuser (초음속 디퓨져에서 발생하는 수직충격파 진동의 이론해석)

  • 김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.36-46
    • /
    • 1998
  • Shock-wave in a supersonic diffuser flow cannot be stable even in the given pressure ratio which remains constant over time, and oscillates around a certain time-mean position. In the present study, oscillation of a normal shock-wave in a supersonic diffuser was analyzed by a small perturbation method. Upstream pressure perturbation was applied to a supersonic diffuser flow with a normal shock-wave. Stability of shock-wave was investigated by considering the diffuser pressure recovery and frequency of the pressure perturbation. The results obtained show that a stable oscillation of weak normal shock-wave is obtainable for the flow with the Mach number over 1.74. The ratio of sound pressures downstream to upstream of the shock wave increases with increase of the Mach number. The present results agree well with other analytical and experimental results.

  • PDF

Numerical Analysis of High-Reynolds-Number Flow around Axisymmetric Body (축대칭체 주위 고 레이놀즈수 유동에 대한 수치해석)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.631-636
    • /
    • 2008
  • In this paper, numerical analysis based on the RANS equation and the Realizable ${\kappa}-{\varepsilon}$ turbulence model is carried out for flows around an axisymmetric body at three Reynolds numbers($1.22{\times}10^7$, $1.0{\times}10^8$, $1.5{\times}10^8$) and the numerical results are compared with experiments data. Computed velocity distributions agree well with experiments as the Reynolds number increases. Pressure distributions agree well with the results of the potential flow except the tail region but differ from experiments for the parallel middle body as well as tail region. Pressure gradients show a good agreement with those of potential flow and experiment except the tail region. Friction coefficients show that the numerical results generally are lower than the experimental results estimated from the measured velocity. The difference of friction coefficients between the calculation and the experiment increases with growing of a boundary layer.