• Title/Summary/Keyword: 겹침이음길이

Search Result 41, Processing Time 0.024 seconds

Evaluation of Structural Behavior of Connections in Precast Arch Structures (프리캐스트 아치구조의 이음부 구조 거동 평가)

  • Shim, Chang Su;Kim, Dong Chan;Choi, Dae;Jin, Kyung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.747-756
    • /
    • 2016
  • In this paper, a connection details for precast arch structures was proposed. Experiments were performed to evaluate structural performance of the loop connection details satisfying current design requirements and of alternative details for improvement of constructability. Precast arch specimens considering the current design requirements showed higher structural capacity than a cast-in-place arch specimen. Crack width at the connection of arch crown showed smaller value than 0.2 mm due to increased compression force by the applied vertical load. Strengthening by wire-mesh at notch area of the connection improved initial crack control capability. Connection detail with couplers and headed bars showed similar capacity to the reference specimen. The alternative details to improve constructability of reinforcements can be used without decreasing structural performance. Specimens with smaller internal diameter of mandrel and shorter loop splicing than the current design codes showed worse behavior in terms of crack width control.

An Experimental Study on Bond Strength of High-Strength Reinforcing Bars with High Relative Rib Area (높은 마디면적 고강도 철근의 부착강도에 관한 실험적 연구)

  • Hong Geon-Ho;Choi Dong-Uk;Choi Oan-Chul;Hong Gi-Suop
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.375-384
    • /
    • 2005
  • The effects of bar deformation properties on bond of steel reinforcing bars to concrete are experimentally studied to predict the bond strength. Based on the previous research about high relative rib area, bond strength between reinforcing bars and concrete can be improved by the control of rib height and spacing. But, the equations in Korean code provisions to estimate development and splice length do not include these specifications of reinforcing bars. So the purpose of this paper is to determine the effect of relative rib area to the bond strength. This paper describes 2 kinds of experimental researches. Thirty beam-end specimens were tested to investigate the effects of bar size and relative rib areas ranging from 0.112 to 0.162. And, twelve lap-splice beam specimens were tested to the same variables. Each test results are normalized and compared with the proposed equations of ACI 408 committee. The results show that bond strength is increased as bar size and the relative rib area(Rr) increase. The distribution of flexural cracks and failure aspect do not appear to be affected by $R_r$.

Seismic Behavior of Circular Sectional RC Bridge Columns with Various Lap-splice Lengths - An Experimental Study - (축방향철근 겹침이음길이에 따른 RC원형 교각의 거동특성 - 실험적 연구 -)

  • Kim, Ick Hyun;Sun, Chang Ho;Lee, Seung Hwa;Park, Kwang Soon;Seo, Hyeong Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.47-56
    • /
    • 2012
  • It is known that seismic performance of existing bridges having insufficient lateral confinements and lap-splices of longitudinal reinforcements at the base of column decreases dramatically. In this study, small-scaled model tests have been performed to confirm the seismic behaviors of RC bridge piers with various lap-splice lengths. The 8 test models have circular section with diameters of 0.65 m, 0.8 m, 1.0 m, and lap-splice lengths of B-class or C-class. The test results show that the failure modes of models are not depending on the lap-splice length itself but depend on the ratio of lap-splice length to diameter, and that the displacement ductility is also affected by this ratio.

A Study on the Joint Property by the Surface Treatment Method on the Jointing Method of PET Film using the High Hardness Liquid (고경질 도막을 이용한 PET 필름 접합공법의 필름 표면처리 방법에 따른 접합특성 연구)

  • Lee, Jong-Suk;Kim, Young-Sam;Shin, Hong-Chol;Kim, Young-Geun;Kang, Chung-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.153-159
    • /
    • 2014
  • This research reviewed the joint and duration characteristics depending on the surface treatment condition and lap spliced length in the PET film jointing method using the high hardness liquid material. As a result, the corona discharge treatment was improved to the contact angle, joint tensile strength, and joint peel resistance compared to non-treatment. Particularly, a surface treatment E (Corona discharge + Primer + PU bond + Polyester fabric) turned out to the best, and especially when the lap spliced length is longer than 15mm, stable joint performance was secured under the long term deterioration treatment of 16 weeks. Thus, the joint is considered to be applicable as the water-proof material.

Development of Filler Type Mechanical Splice for High Strength Re-bar (고강도 철근용 충전형 기계적 이음장치 개발 연구)

  • Lee, Seongsoo;Chun, Homin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.686-693
    • /
    • 2018
  • Various types of re-bar splicing methods have been developed and applied to reinforced concrete (RC) structures in the field. According to previous studies, the coupler splice is relatively superior to the lap splice in terms of cost efficiency when the diameter or strength of the re-bar is larger or higher. This study was performed to develop a filler type mechanical splice for a high-strength re-bar (SD600) in reinforced concrete structures. The deformed re-bars were inserted into a circular steel tube coupler and high-strength epoxy filler was then injected into the coupler. The splice system was completed by hardened filler in a coupler. The epoxy filler was used as the manufactured production epoxy to conduct experiments of filler type mechanical splice specimens, and to observe the failure loads and failure aspects of the specimens. For this goal, the experiment of one-way tensile test was conducted for the epoxy filler type mechanical splices specimens according to the compressive strength of epoxy, length of coupler, and diameter of re-bar. The shape of failure of the re-bar coupler splice showed that the re-bars were pulled between the lugs of the re-bars as a result of the shear fracture of the hardened epoxy. The actual failure load of the experiment specimen was approximately 2 times higher than the expected failure load of the epoxy filler, which greatly improves the failure load of the hardening epoxy filler due to the restraint of the steel coupler.

Seismic Performance Assessment of Existing Circular Sectional RC Bridge Columns according to Lap-splice Length of Longitudinal Bars (축방향철근의 겹침이음길이에 따른 원형 RC교각의 내진성능평가)

  • Park, Kwang Soon;Seo, Hyeong Yeol;Kim, Tae-Hoon;Kim, Ick Hyun;Sun, Chang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.201-212
    • /
    • 2014
  • The plastic hinge region of RC pier ensures its nonlinear behavior during strong earthquake events. It is assumed that the piers secure sufficient strength and ductility in order to prevent the collapse of the bridge during strong earthquake. However, the presence of a lap-splice of longitudinal bars in the plastic hinge region may lead to the occurrence of early bond failure in the lap-splice zone and result in significant loss of the seismic performance. The current regulations for seismic performance evaluation limit the ultimate strain and displacement ductility considering the eventual presence of lap-splice, but do not consider the lap-splice length. In this study, seismic performance test and analysis are performed according to the cross-sectional size and the lap-splice length in the case of longitudinal bars with lap-splice located in the plastic hinge region of existing RC bridge columns with circular cross-section. The seismic behavioral characteristics of the piers are also analyzed. Based upon the results, this paper presents a more reasonable seismic performance evaluation method considering the lap-splice length and the cross-sectional size of the column.

Time Dependent Reduction of Clamping Forces of High Strength Bolt F13T (시간에 따른 F13T 고장력 볼트의 체결력 감소)

  • Jo, Jae Byung;Seong, Taek-Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.291-297
    • /
    • 2009
  • Relaxation of high strength bolts was investigated. Block type and splice type specimens were fabricated with different types of bolts and different clamping lengths. Bolts were tightened to the specified torque. Clamping forces were measured through strain gauges installed on the shafts of bolts, while specimens were kept in a constant temperature and humidity. In all cases, ratio of clamping force reduction is less than 10%. Test results of different types of specimens and bolts and different clamping lengths were compared each other by using a simple model, which is suggested in this study for the estimation of bolt relaxation. The suggested model shows reasonably good agreements with test results for all cases. No difference is found between F13T and F10T bolts, but Dacro coated bolts shows higher relaxation than black bolts by approx. 30%. And also the comparison of test results shows that ratios of bolt relaxation become larger as clamping lengths of bolt shorter and the number of faying surfaces greater.

Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bars with Different Surface Design (외피형태에 따른 GFRP 보강근의 겹침 이음길이)

  • Choi Dong-Uk;Lee Chang-Ho;Ha Sang-Soo;Park Young-Hwan;You Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.449-452
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars with two different to surface type were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length. Two different GFRP bar surfaces were tested: (1) spiral-type GFRP bars and (2) sand coated GFRP bars. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was reached using the lap splice length of $30d_b$. Splice failure was observed in the specimen with the lap splice length of $20d_b$. For the spiral-type and sand coated GFRP bars, the tensile strength developed in the GFRP bars decreased with decreasing splice lengths. Development of the cracks on beam surfaces was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

Experimental Evaluation on Bond Strengths of Reinforcing Bar in Coils with Improved Machinability during Straightening Process (직선화 가공성을 고려한 코일철근의 실험적 부착강도 평가)

  • Chun, Sung-Chul;Choi, Oan-Chul;Jin, Jong-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • A new deformation of reinforcing bar in coils was proposed to improve a machinability of straightening process, which has crescent-shaped transverse ribs with an inclination angle of 50 degrees, a crest width of $0.15d_b$, and a flank inclination of 55 degrees. The proposed deformation can increase contact area between a surface of re-bar and a groove of a roller during a straightening process and, therefore, it might reduce a damage of ribs, improve a final straightness, and enhance an efficiency of the straightening process. Splice tests were conducted to evaluate bond strengths of three types of re-bar in coils including the proposed re-bar, of which the inclination angles of transverse ribs were 50, 60, and 90 degrees, respectively. Test results show that the re-bars in coils have higher bond strengths than predicted strengths by equations of Orangun et al., ACI 408, and KCI by at least 10%. Correlation coefficients of bond strengths between a straight bar and re-bars in coils are 0.94 and more. Consequently, equations of the KCI code for determining development and splice lengths can be applied to the tested re-bars in coils.

Experimental Study on the Precast Concrete Joint using Re-bar Debonding and Cutting Technique (철근 비부착 및 절단 기법을 사용한 PC 접합부의 실험적 연구)

  • Yi, Waon-Ho;Moon, Jung-Ho;Lee, Yong-Jae;Lee, Han-Jun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.131-141
    • /
    • 2002
  • Precast concrete (PC) panels are often used as retaining walls to support soil pressure. In such a case, the panels should be connected at the location where PC panels meet with a buttress. However, it is not easy to provide enough development length for the reinforcing steels due to the limited width of the buttress. If it happens, the width of buttress should be increased as large enough although it is not desirable. The critical section required for providing the development length is always located where the flexural moment is maximum. Thus it is the place the buttress width ends. Also it is the place that the reinforcing steels stressed to maximum. However, it is possible to make differentiate between the maximum moment location and the most stressed location of reinforcing steels. It means that the most stressed location of reinforcing steels, the critical section, can be moved to the other place where the moment is not maximum. New critical location will have less moment than that of buttress width ends. In consequence, the development length would be longer than that of the typical way of construction. Debonding or cutting technique make it possible to reduce the moment strength of a section. Therefore reinforcing steels are debonded or cut to have a desired flexural strength at a desired place. In this study, five test specimens in full scale were erected to examine the effects of critical section movement in PC panel joints. Test parameters were the length variations of debonded and cut reinforcing steels. The test results showed that the debonding or cutting technique could be used to lengthen the development length in the joint of PC panels.