• Title/Summary/Keyword: 겹치기

Search Result 128, Processing Time 0.03 seconds

Prediction of Natural Frequency via Change in Design Variable on Connection Area of Lap Joint (겹치기 이음부의 설계변수 변화에 따른 고유진동수의 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.57-62
    • /
    • 2019
  • This paper describes the prediction of eigenfrequencies due to changes in stiffness and mass in the connection area of the lap joint beam in terms of linear and torsional stiffness as well as connection length. The sensitivities of mass and stiffness in the finite element model were derived by using the first-order differential and algebraic equation and were thereafter applied to obtain new natural frequencies that were compared with theoretical exact solutions. Newly predicted natural frequencies due to only a change in stiffness were in relatively good agreement with those in lower modes for rigid joints, while further investigation was needed for flexible joints. On the other hand, only the change in mass resulted in a large discrepancy in the flexible joint case. It may be strongly anticipated that this study will provide a useful tool for estimating modal parameters by change in any design variable, such as the structural dimension, material property, or connection type for a large-scale structure, even though the proposed methodology is currently limited to a jointed beam.

Nd:YAG 레이저를 통한 SIDE PANEL의 3겹 겹치기 레이저 용접

  • 장인성;서보신;권태용
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2000.06a
    • /
    • pp.55-60
    • /
    • 2000
  • Laser welding is an important technology in the assembly of automotive. In this paper, Nd:YAG laser welding of applications for auto body assembly will be introduced. This paper will describe characteristics of the CW Nd:YAG laser lap-joint welding, and laser welding of specific configurations for a Zinc-coated steel. Experimental results indicated that the weld quality of auto body assembly using the CW Nd:YAG laser welding technology.

  • PDF

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (III) - Comparison on Laser Weldability of Boron Steel and Hot-Stamped Steel - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (III) - 보론강 및 핫스탬핑강의 레이저 용접특성 비교 -)

  • Choi, So Young;Kim, Jong Do;Kim, Jong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.89-94
    • /
    • 2015
  • This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and thet of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained.

Analysis of Weladbility on Resistance Spot Weld for 3 Steel Sheets of Automotive Car Body Using Simulation Method and Nugget Growth Curve (시뮬레이션 및 너겟 성장 곡선을 이용한 자동차 차체용 3겹 강판의 저항점 용접성 분석)

  • Park, Young-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3155-3160
    • /
    • 2010
  • Nowadays, most car manufactures have tried to improve fuel efficiency and corrosion resistance of car body. Therefore, use of high strength steels and coated steel becomes more and more increased. In this study, spot weld characteristics according to lap sequence of sheets were analyzed using simulation method for three different steel sheet of car body which were EDDQ class coated steel with 0.7t, high strength steel 440R with 1.2t and advanced high strength steel DP 590 with 1.0t. Using simulation, weldability was evaluated by nugget size of welded zone according to nugget growth curve and welding current with respect to lap sequence of sheets. Contact resistance of each sheets contact point was used to analyze formation of nugget and optimal lap sequence was suggested.

Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO2 Laser Welding of Zn-Coated Steel (아연코팅 강판의 CO2 레이저용접시 인프로세스 모니터링을 위한 측정신호와 용접결함과의 관련성 연구)

  • Kim, Jong-Do;Lee, Chang-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1507-1512
    • /
    • 2010
  • In this study, the plasma induced by $CO_2$ laser lap welding of 6t Zn coated steel used for ship building was measured using photodiodes and a microphone. Then, the welding phenomenon with gap clearance of lap joint was compared with RMS-treated signal. Thus, we found that intensity of the RMS-treated signal increased with Zn vaporization; further, the presence of defects results in rapid variations with the RMS value as a function of lap-joint parameters. Besides, the FFT value of the raw signal with variations of changing welding parameters was calculated, and then the calculated FFT frequency value was set as the bandwidth of digital filter for a more accurate in-process monitoring. The RMS values were acquired by filtering the raw signal. By matching the weld beads and the calculated RMS values, we confirmed that there is a strong relationship between the signals and the defects.

Failure Mode and Strength of Unidirectional Composite Single Lap Bonded Joints I. Experiments (일방향 복합재료 Single Lap접합 조인트의 파손 모드 및 강도 I. 실험)

  • Kim Kwang-Soo;Yoo Jae-Seok;An Jae-Mo;Jang Young-Soon
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.14-21
    • /
    • 2004
  • Failure process, mode and strength of unidirectional composite single lap bonded joints were investigated experimentally with respect to bonding methods, those are, co-curing with and without adhesive and secondary bonding. The co-cured joint specimens without adhesive had the largest failure strength. Progressive failures along the adhesive layer occurred in the secondary bonded specimens. In the co-cured specimens with adhesive film which had better material strength and adhesion performance, delamination failure occurred and the joint strengths were less than those of secondary bonded specimens. Delamination failure did not occur in the secondary bonded specimens because of earlier crack growth and progressive failure in the adhesive layer. Therefore, failure strength of composite bonded Joints were not always proportionate to material strength and adhesion performance of the adhesive due to the weakness of delamination in composite materials. The effects of surface roughness, bondline thickness and fillets were also studied on secondary bonded specimens.

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (II) - Laser Weldability of Hot Stamping Steel with Ultra-High Strength - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (II) - 초고강도 핫스탬핑강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Park, In Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1373-1377
    • /
    • 2014
  • Hot-stamping is a method of obtaining ultrahigh-strength steel by simultaneously forming and cooling boron steel in a press die after it has been heated at $900^{\circ}C$ or above. After heat treatment, boron steel has a strength of 1500 MPa or more. This material ensures a high level of quality because it overcomes the spring-back phenomenon, which is a problem associated with high-strength steel materials, and the degree of dimensional precision is improved by 90 or more because of the good formability compared with existing types of steel. In this study, the welding characteristics were identified through the butt and lap welding of hot-stamped steel using a disk laser. Full penetration was obtained at a faster speed with butt welding compared to lap welding, and a white band was observed in every specimen.

Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability - (티타늄 판재의 파이버 레이저 용접시 공정변수에 따른 용접특성 (II) - 입열량 제어에 따른 영향 -)

  • Kim, Jong Do;Kim, Ji Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1055-1060
    • /
    • 2016
  • Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of $0.5mm^t$ pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

Study of Defect Prevention on Weld Zone of Magnesium Alloy by Pulse Control of Nd:YAG Laser (Nd:YAG 레이저의 펄스 제어에 의한 마그네슘 합금 용접부의 결함 방지에 관한 연구)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Jang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.99-104
    • /
    • 2010
  • Magnesium and magnesium alloys, the lightest structural materials, have been received plenty of global attention recently. These alloys could be applied in various fields, especially the electronics industry, because of their excellent electromagnetic interference shielding. However, the welding technique of magnesium alloys has not been established. This study is related to the welding of AZ31B magnesium alloy by a short-pulsed a Nd:YAG laser. Two types of pulse waves, square pulse and variable pulse, were used to control weld defects. Results show that the crack and porosity, generated in the weld, had not been controlled by general square pulse. But through the application of variable pulse, the defects could be prevented and the good weld zone was obtained.