• 제목/요약/키워드: 결함 패턴 탐지

검색결과 228건 처리시간 0.025초

CNN과 Kibana를 활용한 호스트 기반 침입 탐지 연구 (Host-based intrusion detection research using CNN and Kibana)

  • 박대경;신동규;신동일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.920-923
    • /
    • 2020
  • 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 기존의 저장된 패턴에서 벗어난 지능형 공격을 탐지하기에 적절하지 않다. 딥러닝(Deep Learning) 기반 침입 탐지는 새로운 탐지 규칙을 생성하는데 적절하다. 그 이유는 딥러닝은 데이터 학습을 통해 새로운 침입 규칙을 자체적으로 생성하기 때문이다. 침입 탐지 시스템 데이터 세트는 가장 널리 사용되는 KDD99 데이터와 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 본 논문에서는 1차원 벡터를 이미지로 변환하고 CNN(Convolutional Neural Network)을 적용하여 두 데이터 세트에 대한 성능을 실험했다. 평가를 위해 Accuracy, Precision, Recall 및 F1-Score 지표를 측정했다. 그 결과 LID-DS 데이터 세트의 Accuracy가 KDD99 데이터 세트의 Accuracy 보다 약 8% 높은 것을 확인했다. 또한, 1차원 벡터에 대한 데이터를 Kibana를 사용하여 데이터를 시각화하여 대용량 데이터를 한눈에 보기 어려운 단점을 해결하는 방법을 제안한다.

대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용 (Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity)

  • 이정원;임일
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.267-286
    • /
    • 2023
  • 인공지능 스피커로 대표되는 대화형 에이전트는 사람-컴퓨터 간 대화형이기 때문에 대화 상황에서 오류가 발생하는 경우가 잦다. 에이전트 사용자의 발화 기록에서 인식오류는 사용자의 발화를 제대로 인식하지 못하는 미인식오류 유형과 발화를 인식하여 서비스를 제공하였으나 사용자가 의도한 바와 다르게 인식된 오인식오류 유형으로 나뉜다. 이 중 오인식오류의 경우, 서비스가 제공된 것으로 기록되기 때문에 이에 대한 오류 탐지가 별도로 필요하다. 본 연구에서는 텍스트 마이닝 기법 중에서도 단어와 문서를 벡터로 바꿔주는 단어 임베딩과 문서 임베딩을 이용하여 단순 사용된 단어 기반의 유사도 산출이 아닌 단어의 분리 방식을 다양하게 적용함으로써 연속 발화 쌍의 유사도를 기반으로 새로운 오인식오류 및 신조어 탐지 방법을 탐구하였다. 연구 방법으로는 실제 사용자 발화 기록을 활용하여 오인식오류의 패턴을 모델 학습 및 생성 시 적용하여 탐지 모델을 구현하였다. 그 결과, 오인식오류의 가장 큰 원인인 등록되지 않은 신조어 사용을 탐지할 수 있는 패턴 방식으로 다양한 단어 분리 방식 중 초성 추출 방식이 가장 좋은 결과를 보임을 확인하였다. 본 연구는 크게 두 개의 함의를 가진다. 첫째, 인식오류로 기록되지 않아 탐지가 어려운 오인식오류에 대하여 다양한 방식 별 비교를 통해 최적의 방식을 찾았다. 둘째, 이를 실제 신조어 탐지 적용이 필요한 대화형 에이전트나 음성 인식 서비스에 적용한다면 음성 인식 단계에서부터 발생하는 오류의 패턴도 구체화할 수 있으며, 오류로 분류되지 않더라도 사용자가 원하는 결과에 맞는 서비스가 제공될 수 있음을 보였다.

이동 무선망을 위한 비유사도 기반 비정상 행위 탐지 방법의 설계 및 평가 (Design and evaluation of a dissimilarity-based anomaly detection method for mobile wireless networks)

  • 이화주;배인한
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.387-399
    • /
    • 2009
  • 이동 무선망은인증의 절도와 침입에 의해 계속 고통을 받고 있다. 그러한 두 문제 모두 2가지 다른 방법: 오용 탐지 또는 비정상 행위 기반 탐지로 해결될 수 있다. 이 논문에서, 우리는 이동 무선망의 이동 패턴과 같은 정상 행위를 효율적으로 식별할 수 있는 비유사도 기반 방법을 제안한다. 제안하는 알고리즘에서, 정상 프로파일은 이동 무선망에서 이동 사용자들의 정상 이동 패턴으로부터 구축되어진다. 구축된 정상 프로파일로부터, 가중 비유사도 측정으로 비유사도가 계산되어진다. 만일 가중 비유사도 측정치가 시스템 매개변수인 비유사도 임계치보다 크면, 경고 메시지가 발생된다. 제안된 방법의 성능은 모의실험을 통하여 평가되었다. 그 결과, 제안하는 방법의 성능이 비유사도 측정을 사용하는다른 비정상 행위 탐지 방법의 성능 보다 우수함을 알 수 있었다.

  • PDF

설비 결함 식별 최적화를 위한 오토인코더 기반 N 분할 주파수 영역 이상 탐지 (Autoencoder Based N-Segmentation Frequency Domain Anomaly Detection for Optimization of Facility Defect Identification)

  • 박기창;이용관
    • 정보처리학회 논문지
    • /
    • 제13권3호
    • /
    • pp.130-139
    • /
    • 2024
  • 제조 분야 설비 예지보전을 위해서 진동, 전류, 온도 등 물리 데이터를 기반으로 설비 이상을 탐지하는 인공지능 학습 모델이 활용되고 있다. 설비 결함, 고장 등 설비 이상 유형은 매우 다양하므로, 주로 오토인코더 기반 비지도 학습 모델을 이용한 이상 탐지 방법이 적용되고 있다. 설비 상태의 정상, 비정상 여부는 오토인코더의 재구성 오차를 이용해 효과적으로 분류할 수 있지만, 설비 이상의 구체적인 상태를 식별하는 데 한계가 있다. 설비 불균형, 정렬 불량, 고정 불량 등 설비 이상 상황 발생 시, 설비 진동 주파수는 특정 영역에서 정상 상태와 다른 패턴을 나타낸다. 본 논문에서는 전체 진동 주파수 범위를 N개 영역으로 나누어 이상 탐지를 수행하는 N 분할 이상 탐지 방법을 제시하였다. 압축기의 진동 데이터를 이용해 주파수와 강도를 달리한 9종의 이상 데이터를 대상으로 실험한 결과, N 분할을 적용하였을 때 더 높은 이상 탐지 성능을 나타냈다. 제안 방법은 설비 이상 탐지 이후, 설비 이상 구체화에 활용될 수 있다.

유전자알고리즘을 적용한 침입탐지시스템 (Using Genetic Algorithms for Intrusion Detection Systems)

  • 양지홍;김명준;한명묵
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.517-519
    • /
    • 2002
  • 침입탐지 시스템은 정밀성자 적응성, 그리고 확장성을 필요로 한다. 이와 같은 조건을 포함하면서 복잡한 Network 환경에서 중요하고 기밀성이 유지되어야 할 리소스를 보호하기 위해, 우리는 더욱 구조적이며 지능적인 IDS(Intrusion Detection Systems) 개발의 필요성이 요구되고 있다. 본 연구는 데이터 마이닝(Data mining)을 통해 입 패턴, 즉 침입 규칙(Rules)을 생성한다. 데이터 마이닝 기법 중 분류(Classification)에 초점을 맞추어 분석과 실험을 하였으며, 사용된 데이터는 KDD데이터이다. 이 데이터를 중심으로 침입 규칙을 생성하였다. 규칙생성에는 유전자알고리즘(Genetic Algorithm : GAs)을 적용하였다. 즉, 오용탐지(Misuse Detection) 기법을 실험하였으며, 생성된 규칙은 침입데이터를 대표하는 규칙으로 비정상 사용자와 정상 사용자를 분류하게 된다. 규칙은 "Time Based Traffic Model", "Host Based Traffic Model", "Content Model" 이 세 가지 모듈에서 각각 상이한 침입 규칙을 생성하게 된다. 본 시스템에서 도출된 침입 규칙은 430M Test data set에서 테스트한 결과 평균 약94.3%의 성능 평가 결과를 얻어 만족할 만한 성과를 보였다.의 성능 평가 결과를 얻어 만족할 만한 성과를 보였다.

  • PDF

Support Vector Machine을 이용한 DoS 탐지에 관한 연구 (An Approach for DoS Detection with Support Vector Machine)

  • 김종호;서정택;문종섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.442-444
    • /
    • 2004
  • 서비스 거부 공격은 그 피해의 규모에 비해 방어하기가 무척 어려우며 충분히 대비를 한다 해도 알려지지 않은 새로운 서비스 거부 공격 기법에 피해를 입을 위험성이 항상 존재한다. 또한 최근 나타나고 있는 서비스 거부 공격 기법은 시스템 자원을 고갈시키는 분산 서비스 거부 공격(DDoS)에서 네트워크의 대역폭을 고갈시킴으로서 주요 네트워크 장비를 다운시키는 분산 반사 서비스 거부 공격(DRDoS)으로 진화하고 있다 이러한 공격 기법은 네트워크 트래픽의 이상 징후로서만 탐지될 뿐 개별 패킷으로는 탐지가 불가능하여 공격 징후는 알 수 있으되 자동화된 대응이 어려운 특징이 있다. 본 논문에서는 이미 알려진 공격뿐 아니라 새로운 서비스 거부 공격 패킷을 탐지하기 위하여, 패턴 분류 문제에 있어서 우수한 성능을 보이는 것으로 알려져 있는 Support Vector Machine(SVM)을 사용한 실험을 진행하였다. 테스트 결과. 학습된 공격 패킷에 대해서는 정확한 구분이 가능했으며 학습되지 않은 새로운 공격에 대해서도 탐지가 가능함을 보여주었다.

  • PDF

가중 특징 값을 고려한 러프 집합 기반 비정상 행위 탐지방법의 설계 및 평가 (Design and Evaluation of a Rough Set Based Anomaly Detection Scheme Considering Weighted Feature Values)

  • 배인한;이화주;이경숙
    • 한국멀티미디어학회논문지
    • /
    • 제9권8호
    • /
    • pp.1030-1036
    • /
    • 2006
  • 무선 네트워크의 급속한 확산과 이동 컴퓨팅 응용은 네트워크 보안에 대한 전망을 변화시켰다. 비정상 행위 탐지는 시스템으로 모니터 되는 알 수 없는 행위나 이상한 행위에 대한 패턴 인식 작업이다. 본 논문에서는 셀룰러 이동 망에서 유해한 내부 공격 위장자를 효율적으로 식별할 수 있는 효율적인 러프 집합 기반 비정상 행위 탐지 방법을 제안한다. 제안하는 비정상 행위 탐지 방법에서는 특징 값으로 사용자의 무선 응용 계층의 추적 데이터를 사용한다. 특징 값을 기초로, 이동 사용자의 사용 패턴이 러프 집합에 의해 얻어지고, 그리고 모바일의 비정상 행위는 가중 특징 값을 고려한 러프 소속 함수에 적용하여 효과적으로 탐지될 수 있다. 제안하는 방법의 성능은 모의실험으로 평가하였다. 모의실험 결과, 중요도에 따라 특징 속성에 다른 가중치를 부여하는 방법이 비정상 행위를 더 잘 탐지한다는 것을 확인하였다.

  • PDF

나이브 베이지안과 데이터 마이닝을 이용한 FHIDS(Fuzzy Logic based Hybrid Intrusion Detection System) 설계 (A Design of FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) using Naive Bayesian and Data Mining)

  • 이병관;정은희
    • 한국정보전자통신기술학회논문지
    • /
    • 제5권3호
    • /
    • pp.158-163
    • /
    • 2012
  • 본 논문에서 나이브 베이지안 알고리즘, 데이터 마이닝, Fuzzy logic을 이용하여 이상 공격과 오용 공격을 탐지하는 하이브리드 침입탐지시스템인 FHIDS(Fuzzy logic based Hybrid Intrusion Detection System)을 설계하였다. 본 논문에서 설계한 FHIDS의 NB-AAD(Naive Bayesian based Anomaly Attack Detection)기법은 나이브 베이지안 알고리즘을 이용해 이상 공격을 탐지하고, DM-MAD(Data Mining based Misuse Attack Detection)기법은 데이터 마이닝 알고리즘을 이용하여 패킷들의 연관 규칙을 분석하여 새로운 규칙기반 패턴을 생성하거나 변형된 규칙 기반 패턴을 추출함으로써, 새로운 공격이나 변형된 공격을 탐지한다. 그리고 FLD(Fuzzy Logic based Decision)은 NB-AAD과 DM-MAD의 결과를 이용하여 정상인지 공격인지를 판별한다. 즉, FHIDS는 이상과 오용공격을 탐지 가능하며 False Positive 비율을 감소시키고, 변형 공격 탐지율을 개선한 하이브리드 공격탐지시스템이다.

순환 참조 특성을 기반한 선반입 성능의 개선 (Performance Enhancement through Prefetching Based On Looping Reference Characteristics)

  • 이효정;도인환;노삼혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (B)
    • /
    • pp.327-332
    • /
    • 2007
  • 버퍼캐시에서 선반입은 교체정책과 함께 중요한 성능 향상 기법 중의 하나이다. 하지만 참조 패턴의 특성에 따라서는 선반입을 수행하면 오히려 전체 수행시간을 증가시키는 경우도 보고된 바 있다. 본 논문에서는 참조 패턴을 탐지하고 탐지된 패턴에 적절히 대응하여, 선반입의 이익은 유지하되 성능에 악영향을 미치지 않는 선반입 기법으로 순환 참조 선반입을 제안한다. 성능 평가를 위해서 리눅스에서 현재 사용되고 있는 미리 읽기 선반입과 순환 참조 선반입의 수행 시간을 비교했다. 다양한 참조 패턴을 가지는 트레이스들에 대한 시뮬레이션 성능 평가 결과, 순차 참조를 많이 포함하는 트레이스에 대해서는 순환참조 선반입이 리눅스의 미리 읽기 선반입과 유사한 정도의 $3\sim5%$ 성능향상을 보였다. 뿐만 아니라, 미리 읽기 선반입 정책을 적용했을 때 오히려 40% 가량의 성능 악화를 초래하는 특정 트레이스에 대해서도 순환 참조 선반입을 적용할 경우 0.07%의 아주 미미한 성능 저하만을 유발하였다. 본 연구에서 제안하는 순환 참조 선반입 기법은 이득이 있을 때만 적극적인 선반입을 수행하여 시스템 성능을 향상시키며, 손해가 발생할 때는 선반입을 중지하여 시스템 성능 악화를 방지함을 실험을 통해 알 수 있다.

  • PDF

의사결정나무를 이용한 이상금융거래 탐지 정규화 방법에 관한 연구 (Effective Normalization Method for Fraud Detection Using a Decision Tree)

  • 박재훈;김휘강;김은진
    • 정보보호학회논문지
    • /
    • 제25권1호
    • /
    • pp.133-146
    • /
    • 2015
  • 전자금융사기의 고도화와 함께 지능적인 수법들이 동원됨에 따라 전자금융 사용자들의 피해사례가 늘어나고 있다. 이에 대한 대응 방안으로 금융당국은 사용자 구간에 집중된 기존 보안 대책 외에 이의 한계성을 극복하기 위한 이상거래 탐지 시스템의 도입을 확대 권고하고 있다. 이상거래 탐지 시스템은 실시간으로 고객의 거래를 확인하고 이상거래 유무를 판별하여 전자금융 사고를 방지할 수 있도록 하는 시스템으로 거래 정보를 빠르게 분석하여 이상거래를 식별하는 것이 핵심이다. 본 논문에서는 사고 데이터분석을 통해 이상 징후 패턴을 파악하고 탐지 룰을 설정하고, 이렇게 설정된 룰을 기반으로 고객 개인별 거래 패턴과 고객 프로파일을 비교하여 이상거래 여부를 판단하고자 한다. 이때 의사결정나무를 사용하여 탐지 룰을 정규화 하여 효과적으로 이상거래를 탐지 할 수 있도록 하는 방법을 제안하고자 한다. 실증 분석을 위해 국내 모 은행의 전자금융 사고 데이터를 바탕으로 패턴 정보와 고객 프로파일 정보를 도출하였고 이를 통하여 탐지 룰을 설정하였다. 그리고 탐지된 룰을 의사결정나무를 사용하여 정규화 한 결과를 순차적인 탐지 방식과 비교하여 제시된 방안이 효과적임을 확인하였다.