• Title/Summary/Keyword: 결함 패턴 탐지

Search Result 228, Processing Time 0.03 seconds

자동적인 규칙 기반 방법을 이용한 지능형 침입탐지시스템 (The Intelligent Intrusion Detection Systems using Automatic Rule-Based Method)

  • 양지홍;한명묵
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.531-536
    • /
    • 2002
  • 본 연구는 유전자 알고리즘을 IDS에 적용된 오용 탐지 기법을 처음으로 제안하고 구현한 점에서 의미가 있다. 세계적인 대회인 KBD 콘테스트의 데이터를 사용하여 실험하였으며, 그에 따른 가능한 한 같은 환경 하에서 실험을 실시하였다. 실험은 레코드집합을 하나의 유전자로, 즉 하나의 공격패턴으로 간주하고 유전자 알고리즘을 활용하여 진화 시켜 침입 패턴,즉 침입 규칙(Rules)을 생성한다. 데이터 마이닝 기법중 분류(Classification)에 초점을 맞추어 분석과 실험을 하였다. 이 데이터를 중심으로 침입 패턴을 생성하였다. 즉, 오용탐지(Misuse Detection) 기법을 실험하였으며, 생성된 규칙은 침입데이터를 대표하는 규칙로 비정상 사용자와 정상 사용자를 분류하게 된다. 규칙은 "Time Based Traffic Model", "Host Based Traffic Model", "Content Model" 이 세가지 모듈에서 각각 상이한 침입 규칙을 생성하게 된다. 규칙 생성의 지속적인 업데이트가 힘든 오용탐지 기법에 지속적으로 성장하며 변화해 가는 규칙을 자동적으로 생성하는 시스템으로서, 생성된 규칙은 430M Test data 집합에서 테스트한 결과 평균 약 94.3%의 탐지율을 보였다. 테스트한 결과 평균 약 94.3%의 탐지율을 보였다.

규칙 적용 성능을 개선하기 위한 다중 패턴매칭 기법 (A Multiple Pattern Matching Scheme to Improve Rule Application Performance)

  • 이재국;김형식
    • 정보보호학회논문지
    • /
    • 제18권3호
    • /
    • pp.79-88
    • /
    • 2008
  • 인터넷 환경에서 내부 네트워크를 보호하기 위하여 침입탐지시스템이 광범위하게 사용되고 있다. 침입탐지시스템은 비정상 패킷의 특성을 분석하여 규칙을 생성하고 이 규칙들을 이용하여 패킷들을 필터링함으로써 내부 시스템들을 보호한다. 최근 공격 사례가 많아지고, 공격 형태가 구조화되면서 이를 탐지하는 규칙의 수도 지속적으로 증가하고 있다. 이에 따라 침입탐지시스템이 규칙을 적용하는 과정에서의 성능 하락 정도도 커지고 있다. 본 논문은 규칙을 적용하는 과정에서 상대적으로 오버헤드가 큰 문자열 검색 성능을 개선하고자 복수개의 부분패턴을 이용한 다중 패턴매칭 기법을 제안한다. 그리고 대표적인 고성능의 다중 패턴매칭 알고리즘인 Wu-Manber 알고리즘과 성능을 비교하고 그 결과를 보인다.

그래프 데이터베이스 기반 악성코드 행위 탐지 기법 (Graph Database based Malware Behavior Detection Techniques)

  • 최도현;박중오
    • 융합정보논문지
    • /
    • 제11권4호
    • /
    • pp.55-63
    • /
    • 2021
  • 최근 악성코드 발생률은 약 수만 건이 넘는 추세로, 전부 탐지/대응하는 것은 불가능에 가깝다고 알려졌다. 본 연구는 새로운 악성코드 대응방법으로 그래프 데이터베이스 기반 다중행위 패턴 탐지 기법을 제안한다. 기존 동적 분석기법과는 다른 새로운 그래프 모델을 설계하고, 대표적인 악성코드 패턴(프로세스, PE, 레지스트리 등)의 그래프 연관관계를 분석하는 방법을 적용했다. 패턴 검증 결과 기본 악성 패턴에 대한 행위 탐지와 기존 분석이 어려웠던 변종 공격행위(5단계 이상)의 탐지를 확인했다. 또한, 성능 분석결과 5단계 이상의 복잡한 패턴에 대하여 관계형 데이터베이스 대비 약 9.84배 이상 성능이 향상되었음을 확인하였다.

사용자 입력 패턴 및 전자 금융 거래 패턴을 이용한 모바일 뱅킹 이상치 탐지 방법 (Outlier Detection Method for Mobile Banking with User Input Pattern and E-finance Transaction Pattern)

  • 민희연;박진형;이동훈;김인석
    • 인터넷정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.157-170
    • /
    • 2014
  • 모바일 뱅킹을 이용한 거래 증가세가 지속되면서 모바일 금융 보안 위협 또한 증가하고 있다. 모바일 뱅킹은 금융사가 제작한 전용 앱을 통해 금융거래를 수행하는 방식으로 인터넷 뱅킹에 준하는 대부분의 서비스를 제공하고 있다. 모바일 뱅킹 전용 앱에서 저장하고 있는 신용카드 번호와 같은 개인정보는 해커의 악의적인 공격이나 모바일 단말 분실로 인해 2차적인 공격에 이용될 수 있다. 따라서 본 논문에서는 이러한 개인정보 유출에 의한 모바일 금융사고 위협에 대응하기 위해 모바일 단말에서 뱅킹 서비스 이용시 사용자의 입력 패턴과 거래 패턴을 이용하여 올바른 사용자에 의한 거래 시도인지 여부를 판단할 수 있는 이상치 탐지 방법을 제안한다. 사용자의 입력 패턴과 거래 패턴 데이터에는 특정 사용자를 식별할 수 있는 정보들이 포함되어 있으며, 따라서 이를 적절히 이용할 경우 올바른 사용자에 의한 금융 거래와 비정상 거래를 구분하기 위한 자료로 사용할 수 있다. 본 논문에서는 실험을 위해 스마트 폰에서 직접 사용자 입력 패턴 정보를 수집하였고, 국내 모 금융사에서 이상치 탐지에 사용하는 실험 데이터를 획득하여 거래 패턴 정보로 활용하였다. 수집된 정보를 바탕으로 입력 패턴 및 거래 패턴 기반의 탐지 실험을 진행한 결과, 효율적으로 이상 거래를 탐지할 수 있음을 확인하였다.

SVM classification을 이용한 호스트 기반 침입 탐지 (Detecting Host-based Intrusion with SVM classification)

  • 이주이;김동성;박종서;염동복
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2002년도 종합학술발표회논문집
    • /
    • pp.524-527
    • /
    • 2002
  • 본 연구에서는 Support Vector Machine(SVM)을 이용한 호스트 기반 침임 탐지 방법을 제안한다. 침입 탐지는 침입과 정상을 판단하는 이진분류 문제이므로 이진분류에 뛰어난 성능을 발휘하는 SVM을 이용하여 침입 탐지 시스템을 구현하였다. 먼저 감사자료를 system call level에서 분석한 후, sliding window기법에 의해 패턴 feature를 추출하고 training set을 구성하였다. 여기에 SVM을 적용하여 decision model을 생성하였고, 이에 대한 판정 테스트 결과 90% 이상의 높은 침입탐지 적중률을 보였다.

  • PDF

랜섬웨어 탐지를 위한 머신러닝 기반 암호화 행위 감지 기법 (A Machine Learning-Based Encryption Behavior Cognitive Technique for Ransomware Detection)

  • 황윤철
    • 산업융합연구
    • /
    • 제21권12호
    • /
    • pp.55-62
    • /
    • 2023
  • 최근 등장하는 랜섬웨어들은 다양한 공격 기법과 다양한 경로를 통해 공격을 수행하고 있어 조기 탐지와 방어에 많은 어려움을 겪고 있으며, 그 피해 규모도 날로 증가하고 있다. 따라서 본 논문에서는 효과적인 랜섬웨어 탐지를 위하여 파일 암호화와 암호화 패턴을 머신러닝 기반으로 하는 감지 기법을 제안한다. 파일 암호화는 랜섬웨어가 공격하는데 필수적으로 사용하는 기능으로 암호 행위와 암호화 패턴을 분석함으로써 랜섬웨어를 탐지하고 랜섬웨어의 특정 변종이나 새로운 유형의 랜섬웨어를 탐지할 수 있기 때문에 랜섬웨어 공격을 식별하고 차단하는 데 매우 효과적이다. 제안한 머신러닝 기반의 암호화 행위 감지 기법은 암호화 특성과 암호화 패턴 특성을 추출하여 머신러닝 기반의 분류기를 통해 각각 학습을 시켜 해당 행위에 대한 탐지를 진행하고 최종 결과는 두 분류기의 평가 결과를 기반으로 앙상블 분류기에서 랜섬웨어 유무를 판별하여 좀 더 정확도를 높였다. 또한, 제안한 기법을 numpy와 pandas, 파이썬의 사이킷런 라이브러리를 사용하여 구현하여 평가지표를 사용한 성능를 평가한 결과 평균적으로 94%,의 정확도와 95%의 정밀도, 93%의 재현률과 95%의 F1 스코어가 산출되었다. 성능 평가 결과를 보면 암호화 행위 감지를 통해 랜섬웨어 탐지가 가능하다는 것을 확인할 수 있었고 랜섬웨어의 사전 탐지를 위해 제안한 기법의 성능을 높이기 위한 연구도 계속해서 진행되어야 한다.

실시간 침입탐지 시스템에 관한 연구 (A Study on Realtime Intrusion Detection System)

  • 김병주
    • 한국정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.40-44
    • /
    • 2005
  • 인공지능, 기계학습 및 데이터마이닝 기법들을 침입탐지 시스템에 적용하는 연구가 활발히 진행되고 있다. 그러나 많은 연구가 공격패턴의 분류를 위한 분류기(classifier)의 학습 알고리즘 성능 개선에 목적을 두고 있다. 그리고 이러한 학습 알고리즘은 대부분 일괄처리(batch) 방식으로 동작하여 실시간 침입탐지 시스템의 적용에는 적합하지 못하다. 본 논문에서는 실시간 침입탐지 시스템을 위한 점증적 특징 추출 기법과 분류가 가능한 실시간 침입탐지 시스템을 제안한다. 제안된 방법을 KDD CUP 99 자료에 적용한 결과 실시간 기법임에도 불구하고 일괄처리 방식과 비슷한 결과를 나타내었다.

병렬 코퍼스를 이용한 한중 기계번역 오류 탐지 방법 (Method for Detecting Errors of Korean-Chinese MT Using Parallel Corpus)

  • 김운;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.113-117
    • /
    • 2008
  • 본 논문에서는 패턴기반 자동번역시스템의 효율적인 번역 성능 향상을 위해 병렬 코퍼스(parallel corpus)를 이용한 오류 자동 탐지 방법을 제안하고자 한다. 번역시스템에 존재하는 대부분 오류는 크게 지식 오류와 엔진 오류로 나눌 수 있는데 통상 이런 오류는 이중 언어가 가능한 훈련된 언어학자가 대량의 자동번역 된 결과 문장을 읽음으로써 오류를 탐지하고 분석하여 번역 지식을 수정/확장하거나 또는 엔진을 개선하게 된다. 하지만, 이런 작업은 많은 시간과 노력을 필요로 하게 된다. 따라서 본 논문에서는 병렬 코퍼스 중의 목적 언어(Target Language) 문장 즉, 정답 문장과 자동번역 된 결과 문장을 다양한 방법으로 비교하면서 번역시스템에 존재하고 있는 지식 및 엔진 오류를 자동으로 탐지하는 방법을 제안한다. 제안한 방법은 한-중 자동번역시스템에 적용하여 그 정확률과 재현률을 측정하였으며, 자동적으로 오류를 탐지하여 추출 할 수 있음을 증명하였다.

  • PDF

배열안테나 패턴 측정 거리에 따른 방향탐지, 간섭제거, 빔형성 성능 분석 (Analysis of Direction Finding, Interference Cancellation, and Beamforming Performance by Array Antenna Pattern Measurement Distance)

  • 고요한;강행익;이철수;김도경;김갑진;박영범
    • 한국항행학회논문지
    • /
    • 제21권6호
    • /
    • pp.593-600
    • /
    • 2017
  • 본 논문에서는 배열안테나의 패턴을 측정하기 위한 배열안테나와 기준 신호원 사이의 거리에 따른 방향탐지, 간섭제거, 빔형성 성능을 분석한다. 배열안테나는 무선통신, 레이더, 소나 등 다양한 분야에서 사용되고 있다. 이러한 배열안테나를 사용하기 위해서는 배열안테나의 패턴을 알고 있어야 하며, 배열안테나의 패턴은 무반향 챔버에서 측정을 통해 얻을 수 있다. 하지만 무반향 챔버의 크기는 제한적이기 때문에 거리에 따른 측정 오차가 발생하게 된다. 이는 배열안테나를 사용하는 방향탐지, 간섭제거, 빔형성의 성능 저하를 유발시킨다. 본 논문에서는 컴퓨터 모의실험을 통해서 배열안테나 패턴 측정 거리에 따른 방향탐지, 간섭제거, 빔형성 성능을 분석하여 결과를 제시한다.

신경망 모델과 CUSUM 제어차트를 결합한 인-시츄 플라즈마 감시 (In-situ plasma monioring using neural network model-coupled CUSUM control chart)

  • 김대현;김병환;유임수;우봉주
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.89-90
    • /
    • 2011
  • 플라즈마 공정 중에 발생하는 플라즈마 누설은 챔버 압력의 변화를 초래하여 증착 또는 식각 중인 박막패턴을 손상시킨다. 따라서 플라즈마 누설을 실시간으로 탐지하는 것이 요구되며, 본 연구에서는 광방사분광기 (Optical emisison spectroscopy), 신경망, 그리고 제어차트를 결합한 플라즈마 누설의 인-시츄 탐지기술을 보고한다. 비교평가 결과 소수의 라디칼 정보를 감시하는 것보다 신경망 모델로부터의 예측정보를 이용할 때 보다 증진된 누설탐지 성능을 확인하였다.

  • PDF