• Title/Summary/Keyword: 결함 위치 추정

Search Result 1,523, Processing Time 0.031 seconds

Online parameter estimation for Sensorless contorl of IPMSM (IPMSM의 센서리스구동을 위한 온라인 파라미터 추정)

  • Hyon, Byongjo;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.567-568
    • /
    • 2011
  • 영구자석 동기 전동기의 센서리스 구동에 있어서 위치와 속도를 정확히 추정하는 것이 중요하다. 정확한 위치와 속도의 추정을 위해서는 정확한 모터 파라미터가 필요한데, 특히나 magnetic saturation에 의한 q-축 인덕턴스의 영향이 가장 크기 때문에 이 논문에서는 매입형 영구자석 동기 전동기(IPMSM)의 센서리스 구동을 위한 q축 인덕턴스 추정에 대한 시뮬레이션 결과와 실험 결과를 나타내었다.

  • PDF

ANN based Indoor Localization Method using the Movement Pattern of Indoor User (사용자 이동 패턴 정보를 이용한 인공신경망 기반 실내 위치 추정 방법)

  • Seo, Jae-Hee;Chun, Sebum;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.526-534
    • /
    • 2019
  • Localization methods using radio signals should obtain range measurements from three or more anchors. However, a typical building consists of narrow, long hallways and corners, making it difficult to secure more than three light of sight anchors. The result is a multi-modal solution that makes it difficult to estimate the user's location. In order to overcome this problem, this paper proposes a method for estimating the location using artificial neural networks. Using the artificial neural network, even if a multi-modal solution occurs, the position can be estimated by acquiring user movement pattern information based on accumulated range measurements. The method does not require any additional equipment or sensors, and only anchor-based range measurements can estimate the user's location. In order to verify the proposed method, location estimation tests were performed in situations where the multi-modal solution occurred by installing an insufficient number of anchors in a building. As a result, it was confirmed that the location can be estimated even when the number of anchors is insufficient.

Improvement of Position Estimation Based on the Multisensor Fusion in Underwater Unmanned Vehicles (다중센서 융합 기반 무인잠수정 위치추정 개선)

  • Lee, Kyung-Soo;Yoon, Hee-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 2011
  • In this paper, we propose the position estimation algorithm based on the multisensor fusion using equalization of state variables and feedback structure. First, the state variables measured from INS of main sensor with large error and DVL of assistance sensor with small error are measured before prediction phase. Next, the equalized state variables are entered to each filter and fused the enhanced state variables for prediction and update phases. Finally, the fused state variables are returned to the main sensor for improving the position estimation of UUV. For evaluation, we create the moving course of UUV by simulation and confirm the performance of position estimation by applying the proposed algorithm. The evaluation results show that the proposed algorithm is the best for position estimation and also possible for robust position estimation at the change period of moving courses.

A Study on Estimation of Motor Unit Location of Biceps Brachii Muscle using Surface Electromyogram (표면 근전도를 이용한 이두박근의 운동단위 위치 추정에 관한 연구)

  • Park, Jung-Ho;Lee, Ho-Yong;Jung, Chul-Ki;Lee, Jin;Kim, Sung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.28-39
    • /
    • 2010
  • In this paper, a new method to estimate MU (motor unit) location in the short head of BIC (biceps brachii) muscle using surface EMG (electromyogram) is proposed. The SMUAP (single motor unit action potential) is generated from a MU located at certain depth from the skin surface. The depth is referred as MU location. For estimating muscle force precisely, the information of the MU location is required. The reference SMUAPs are simulated based on anatomical structure of human muscle, and compared with acquired real EMG signals using 3-channel surface EMG electrode. The proposed method was compared with the results of previous researchers and verified its accuracy by computer simulation. From the simulation result in case of the MU located in 8[mm], the average estimation error of proposed method was 0.01[mm]. But the average estimation error of Roeleveld's method was 2.33[mm] and Akazawa's method was 1.70[mm]. Therefore the proposed method was more accurate than the methods of previous researchers.

Development of Underwater Positioning System using Asynchronous Sensors Fusion for Underwater Construction Structures (비동기식 센서 융합을 이용한 수중 구조물 부착형 수중 위치 인식 시스템 개발)

  • Oh, Ji-Youn;Shin, Changjoo;Baek, Seungjae;Jang, In Sung;Jeong, Sang Ki;Seo, Jungmin;Lee, Hwajun;Choi, Jae Ho;Won, Sung Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.352-361
    • /
    • 2021
  • An underwater positioning method that can be applied to structures for underwater construction is being developed at the Korea Institute of Ocean Science and Technology. The method uses an extended Kalman filter (EKF) based on an inertial navigation system for precise and continuous position estimation. The observation matrix was configured to be variable in order to apply asynchronous measured sensor data in the correction step of the EKF. A Doppler velocity logger (DVL) can acquire signals only when attached to the bottom of an underwater structure, and it is difficult to install and recover. Therefore, a complex sensor device for underwater structure attachment was developed without a DVL in consideration of an underwater construction environment, installation location, system operation convenience, etc.. Its performance was verified through a water tank test. The results are the measured underwater position using an ultra-short baseline, the estimated position using only a position vector, and the estimated position using position/velocity vectors. The results were compared and evaluated using the circular error probability (CEP). As a result, the CEP of the USBL alone was 0.02 m, the CEP of the position estimation with only the position vector corrected was 3.76 m, and the CEP of the position estimation with the position and velocity vectors corrected was 0.06 m. Through this research, it was confirmed that stable underwater positioning can be carried out using asynchronous sensors without a DVL.

Localization of a mobile robot using the appearance-based approach (외향 기반 환경 인식을 사용한 이동 로봇의 위치인식 알고리즘)

  • 이희성;김은태
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.6
    • /
    • pp.47-53
    • /
    • 2004
  • This paper proposes an algerian for determining robot location using appearance-based paradigm. First, this algorithm compresses the image set using Principal Component Analysis(PCA) to obtain a low-dimensional subspace, called the eigenspace, and it makes a manifold that represent a continuous-appearance function. Neural network is employed to estimate the location of the mobile robot from the coefficients of the eigenspace. Then, Kalman filtering scheme is used for the fine estimation of the robot location. The algorithm has been implemented and tested on a mobile robot system. It is shown that the robot location is estimated accurately in several trials.

A study on method to improve the detection accuracy of the location at multi-sensor environment (다중 센서 환경에서 위치추정 정확도 향상 방안 연구)

  • Na, In-Seok;Kim, Yeong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.248-254
    • /
    • 2013
  • In location finding system using spaced multi-sensor, there is the phenomenon that the position estimation accuracy is degraded by the location of signal sources and the sensors. This phenomenon is called GDOP(Geometric Dilution Of Precision) effect. and to minimize these effects, research is needed on how. In this paper, I will describe how to minimize GDOP effect, estimating possibility of GDOP using AOA(angle of arrival) information of spaced multi sensors, and removing sensor error factor in position estimation.

Partial Discharge Characteristics and Localization of Void Defects in XLPE Cable (XLPE 케이블에서 보이드 결함의 부분방전 특성과 위치추정)

  • Park, Seo-Jun;Hwang, Seong-Cheol;Wang, Guoming;Kil, Gyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • Research on condition monitoring and diagnosis of power facilities has been conducted to improve the safety and reliability of electric power supply. Although insulation diagnostic techniques for unit equipment such as gas-insulated switchgears and transformers have been developed rapidly, studies on monitoring of cables have only included aspects such as whether defects exist and partial discharge (PD) detection; other characteristics and features have not been discussed. Therefore, this paper dealt with PD characteristics against void sizes and positions, and with defect localization in XLPE cable. Four types of defects with different sizes and positions were simulated and PD pulses were detected using a high frequency current transformer (HFCT) with a frequency range of 150kHz~30MHz. The results showed that the apparent charge increased when the defect was adjacent to the conductor; the pulse count in the negative half of the applied voltage was about 20% higher than that in the positive half. In addition, the defect location was calculated by time-domain reflectometry (TDR) method, it was revealed that the defect could be localized with an error of less than1m in a 50m cable.

An Improvement for Location Accuracy Algorithm of Moving Indoor Objects (실내 이동 객체의 위치 정확도 개선을 위한 알고리즘)

  • Kim, Mi-Kyeong;Jeon, Hyeon-Sig;Yeom, Jin-Young;Park, Hyun-Ju
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.61-72
    • /
    • 2010
  • This paper addresses the problem of moving object localization using Ultra-Wide-Band(UWB) range measurement and the method of location accuracy improvement of the indoor moving object. Unlike outdoor environment, it is difficult to track moving object position due to various noises in indoor. UWB is a radio technology that has attention for localization applications recently. UWB's ranging technique offer the cm accuracy. Its capabilities for data transmission, range accurate estimation and material penetration are suitable technology for indoor positioning application. This paper propose a positioning algorithm of an moving object using UWB ranging technique and particle filter. Existing positioning algorithms eliminate estimation errors and bias after location estimation of mobile object. But in this paper, the proposed algorithm is that eliminate predictable UWB range distance error first and then estimate the moving object's position. This paper shows that the proposed positioning algorithm is more accurate than existing location algorithms through experiments. In this study, the position of moving object is estimated after the triangulation and eliminating the bias and the ranging error from estimation range between three fixed known anchors and a mobile object using UWB. Finally, a particle filter is used to improve on accuracy of mobile object positioning. The results of experiment show that the proposed localization scheme is more precise under the indoor.

A Study on the Mismatch of Sound Speed Profile in Source Localization Based on MFP (수직선배열센서를 이용한 정합장처리에서 음속분포 오정합에 의한 음원 위치추정에 관한 연구)

  • Byun Yang-Hun;Park Jae-Eun;Kim Jea-Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.210-213
    • /
    • 1999
  • 수동소나체계에서 음원의 위치와 관련된 매개변수를 산출하기 위해 정합장처리(Matched Field Processing)가 이용된다 본 연구에서는 수직선배열센서를 이용한 정합장처리에서 음원 위치추정에 영향을 미치는 다양한 요인 중, 수직음속분포 오정합(mismatch)에 의한 영향을 MV 프로세서 (Minimum Variance Processor)를 이용하여 모의실험함으로써 그 결과를 분석하였다. 천해 모의환경에서 동일한 기울기로 증감하는 수직음속분포 오정합은 음원 위치추정에서 거리성분의 오차를 가지며, 상이한 기울기를 갖는 수직음속분포 오정합은 거리와 수심 성분의 오차가 유발됨을 확인할 수 있었다. 심해 모의 환경에서 수직음속분포 오정합은 거리와 수심 성분의 오차가 유발되고, 거리추정의 전반적인 경향은 천해의 동일한 기울기를 가지는 경우와 유사함을 확인할 수 있었다.

  • PDF