• Title/Summary/Keyword: 결함 영역

Search Result 15,391, Processing Time 0.044 seconds

Fault Detection of Ceramic Imaging using Mininimum Filter (최소값 필터를 이용한 세라믹 영상에서의 결함 영역 검출)

  • Lee, Min-Jung;Nam, Ji-Hyo;Oh, Heung-Min;Kim, Kwang Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.511-513
    • /
    • 2016
  • 본 논문에서는 세라믹 영상에서 사람의 눈으로 판단하기 어려운 결함 영역을 검출하기 위해 배경을 제거한 후에 지역 기반 오츠 이진화와 양방향 소벨 마스크를 적용하여 세라믹 영상의 윤곽선을 검출한다. 윤곽선이 검출된 영상을 수평으로 4등분하고, 각각의 영역에서 밝기 값이 변화는 지점을 탐색한다. 탐색된 좌표 중에서 최대 명암도 값을 이용하여 ROI 영역을 추출한다. 결함 영역 검출의 효율성을 높이기 위한 전 단계로 배경을 제거하기 위해 ROI 영역과 최소값 필터가 적용된 ROI 영역 간의 명암도의 차이를 이용하여 배경을 제거한다. 명암도의 차이를 통해 배경이 제거된 ROI 영역에서 개선된 명암 대비 스트레칭 기법을 적용하여 ROI 영역의 명암 대비를 강조한다. 명암이 강조된 ROI 영역에서 10mm, 11mm, 16mm, 22mm 영상의 결함 영역을 검출하기 위해 히스토그램 이진화 기법을 적용하여 결함의 후보 영역을 추출한다. 결함 후보 영역이 검출된 ROI 영역에서 미세 잡음을 제거하기 위해 중간값 필터와 침식과 팽창을 적용한 후에 최종적인 결함 영역을 검출한다. 제안된 방법을 8mm, 10mm, 11mm, 16mm, 22mm 세라믹 영상을 대상으로 실험한 결과, 제안된 검출 방법이 기존의 검출 방법보다 모든 mm 세라믹 영상에서 효과적으로 결함 영역이 검출되는 것을 확인하였다.

  • PDF

Enhanced Detection of Flaws by using Non-Destructive Testing of Air Deck (항공 갑판의 비파괴 검사를 이용한 개선된 결함 검출)

  • Hong, Dong-Jin;Chae, Byung-Joo;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.168-170
    • /
    • 2011
  • 본 논문에서는 항공 갑판의 비파괴 검사 영상에서, 조직의 이상이나 결함의 정도를 검출하는 기존의 방법보다 결함 검출의 정확도를 개선한 방법을 제안한다. 제안된 결함 검출 방법은 결함의 윤곽선을 추출하기 위하여 라플라시안 필터링 기법을 적용하여 윤곽선을 추출한다. 라플라시안 필터링 기법을 적용하여 윤곽선을 추출할 경우에는 결함 이외의 다른 객체들의 윤곽선도 검출된다. 따라서 본 논문에서는 이진화 기법과 팽창 연산을 적용하여 결함의 후보 객체들을 연결한다. 그리고 Grassfire 라벨링 기법을 적용하여 잡음을 제거하고 팽창 연산과 침식 연산을 이용하여 결함 후보 영역의 크기를 조정한다. 크기가 조정된 결함 후보 영역을 기반으로 원 영상에서 결함 후보 영역을 추출한다. 결함 후보 영역에서 결함 영역을 추출하기 위해 결함 후보 영역의 명암 대비를 증가시키고 결함 후보 영역의 주변 정보를 이용하여 이진화한다. 이진화 된 영역에서 Grassfire 라벨링 기법을 이용하여 잡음을 제거하고 최종적으로 결함 영역을 검출한다. 본 논문에서 제안한 방법으로 항공갑판의 결함을 추출한 결과, 기존의 방법보다 항공 갑판의 결함을 추출하는데 효과적인 것을 확인하였다.

  • PDF

Fault Detection of Ceramic Imaging using Blob Labeling Method (Blob Labeling 기법을 이용한 세라믹 영상에서 결함 검출)

  • Lee, Min-Jung;Lee, Dae-Woo;Yi, Gyeong-Yun;Kim, Kwang Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.519-521
    • /
    • 2015
  • 세라믹 소재 영상에서 결함 영역이 다른 영역보다 명암도가 밝게 나타나는 정보를 이용하여 ROI 영역을 추출한다. 추출된 ROI 영역에서 Blurring 기법을 적용하여 미세 잡음을 제거한다. 미세 잡음이 제거된 ROI 영역에서 Median Filter기법을 적용하여 임펄스 잡음을 제거한다. 임펄스 잡음이 제거된 영역에서 Prewit Mask을 적용하여 수평과 수직 에지를 검출하고 검출된 에지에 윤곽선 추적 기법을 적용하여 결함 영역의 경계를 보정한다. 보정된 영상에서 Blob Labeling 기법을 적용하여 최종적으로 결함 영역을 추출한다. 제안된 방법을 8mm와 10mm 세라믹 소재 영상을 대상으로 실험한 결과, 기존의 결함 검출 방법보다 제안된 검출 방법의 검출 성능이 개선된 것을 확인하였다.

  • PDF

Automatic Defect Detection using Fuzzy Binarization and Brightness Contrast Stretching from Ceramic Images for Non-Destructive Testing (비파괴 검사를 위한 개선된 퍼지 이진화와 명암 대비 스트레칭을 이용한 세라믹 영상에서의 결함 영역 자동 검출)

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2121-2127
    • /
    • 2017
  • In this paper, we propose a computer vision based automatic defect detection method from ceramic image for non-destructive testing. From region of interest of the image, we apply brightness enhancing stretching algorithm first. One of the strength of our method is that it is designed to detect defects of images obtained from various thicknesses, that is, 8, 10, 11, 16, and 22 mm. In other cases we apply histogram based binarization algorithm. However, for 8 mm case, it may have false positive cases due to weak brightness contrast between defect and noise. Thus, we apply modified fuzzy binarization algorithm for 8 mm case. From the experiment, we verify that the proposed method shows stronger result than our previous study that used Blob labelling for all five thickness cases as expected.

Fault Detection of Ceramic Imaging using K-means Algorithm (K-means 알고리즘을 이용한 세라믹 영상에서의 결함 검출)

  • Kim, Kwang Beak;Woo, Young Woon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.275-277
    • /
    • 2014
  • 본 논문에서는 세라믹 소재 영상에 가우시안 필터링 기법을 적용하여 잡음을 제거하고, K-means 알고리즘을 적용하여 결함 영역을 세분화 한 뒤, 세분화된 결함 영역에 Max-Min 이진화 기법을 이용하여 결함 영역을 추출한 후, 형태학적 기법을 이용하여 잡음을 제거하고 결함을 추출한다. 제안된 방법을 세라믹 소재 영상을 대상으로 실험한 결과, 기존의 방법보다 효율적으로 결함이 검출되는 것을 확인하였다.

  • PDF

TFT-LCD Defect Blob Detection based on Sequential Defect Detection Method (순차적 결함 검출 방법에 기반한 TFT-LCD 결함 영역 검출)

  • Lee, Eunyoung;Park, Kil-Houm
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.73-83
    • /
    • 2015
  • This paper proposes a TFT-LCD defect blob detection algorithm using the sequential defect detection method. First, for every pixel, a defect possibility is determined by the intensity difference and the defect candidates are detected according to the sequential defect detection method. For detected candidate pixels, the defect probability that indicates a potential included in the defect according to the each step. By applying the morphological operation, blobs are comprised of the detected candidates and the defect blobs are detected using the defect possibility of blobs. The validity of the proposed method was demonstrated a simulated image and also then it was tested a real TFT-LCD image. By the experimental results, the proposed method is very effective in TFT-LCD detect detection.

Defect Extraction of Ceramic Image using Fuzzy Clustering Based Enhanced Fuzzy Binarization (퍼지 클러스터링 기반 개선된 Fuzzy Binarization 기법을 이용한 세라믹 영상에서의 결함 추출)

  • Choi, Cheol Ho;Lee, Jin Yu;Park, Heon Sung;Kim, Kwang Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.23-26
    • /
    • 2019
  • 본 논문에서는 X-Ray 영상에서 용접한 부분의 기공이나 균열 등의 결함 영역을 추출하는 새로운 방법을 제안한다. 제안된 방법은 세라믹 X-Ray 영상에서 비등방성 확산 필터를 적용하여 영상의 잡음을 제거하고, 수직 및 수평 히스토그램을 각각 적용하여 용접 영역을 추출한 후, 최소 자승법을 적용하여 배경 밝기를 제거하고, 사다리꼴 형태의 Fuzzy Stretching기법을 적용하여 명암 값을 강조하여 결함 영역과 그 외의 영역간의 명암 대비를 강조한다. 그리고 Fuzzy C_Means 알고리즘을 적용하여 결함 영역을 세분화한 후, Fuzzy C_Means을 적용하여 생성된 클러스터들의 중심 명암 값을 이용하여 ${\alpha}_-cut$을 설정한 후에 임계구간을 구하고 영상을 이진화하여 최종적으로 결함 영역을 추출한다. 제안된 방법의 결함 추출 성능을 확인하기 위하여 세라믹 X-Ray 영상을 대상으로 실험한 결과, 기존의 방법보다 결함 영역이 정확히 추출되는 것을 확인할 수 있었다.

  • PDF

A Workbench Domain Adaptation of an MT Lexicon with a Target Domain Corpus (대상 영역 코퍼스를 이용한 번역사전의 특정 영역화를 위한 워크벤치)

  • 노윤형;이현아;김길창
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.163-168
    • /
    • 2000
  • 기계번역에서 좋은 품질의 번역 결과를 얻기 위해서는 대상으로 하고 잇는 전문 영역에 맞게 시스템의 번역 지식을 조정해야 한다. 본 연구에서는 대상 영역 코퍼스를 이용하여 기계번역 시스템의 특정 영역화를 지원하는 워크벤치를 설계하고 구현한다. 워크벤치는 대상 영역의 코퍼스에서 대상 영역의 지식을 추출하는 영역 지식 추출기와, 추출된 지식을 사용자에게 제시하여 사용자가 사전을 편집할 수 있는 환경을 제공하는 영역 지식 검색기와 사전 편집기로 구성된다. 구혀된 워크벤치를 이용하여 일반 영역 사전을 군사 정보 영역으로 특정 영역화를 해 본 결과, 효율성과 정확성에서의 향상이 있었다.

  • PDF

Face Detection Using Region Segmentation (영역 분할을 이용한 얼굴 영역 검출)

  • 박선영;이재원;강병두;김종호;김상균
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.712-714
    • /
    • 2004
  • 본 논문에서는 다양한 변화에서 얼굴을 효과적으로 검출할 수 있는 방법론을 제안한다. 우리는 복잡한 배경에서 보다 효과적으로 얼굴 영역을 검출하기 위해 영역 분할 알고리즘인 JSEG를 이용하여 영역을 분할을 하게 된다. 그리고 조명 변화에 따른 간섭이 비교적 작은 YCrCb 칼라 모델을 이용하여 분할된 영역에서 후보 얼굴 영역을 찾는다. 마지막으로 보다 정확한 결과를 위하여 검출된 얼굴 후보 영역에서 눈과 눈썹을 검출하고 눈과 눈썹의 기하학적 정보를 이용해서 최종 얼굴 영역을 결정한다. 영역 분할을 이용함으로써 복잡한 배경과 다양한 조명 변화를 지닌 환경에서 다양한 얼굴 영상들을 실험한 결과 높은 정확도를 보여주었다.

  • PDF

I-V 측정을 통한 태양전지 다이오드의 전기적 특성 분석

  • Choe, Pyeong-Ho;Kim, Sang-Seop;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.306-306
    • /
    • 2012
  • 본 연구에서는 태양전지 소자의 온도에 따른 전류-전압(I-V) 특성 변화를 통해 태양전지 다이오드의 전기적 특성을 분석하였다. 상온 조건의 경우 공핍층 영역(SCR)과 준중성 영역(QNR)에서 각각 3.02와 1.76의 이상 계수 값을 보였으며, 온도가 300 K에서 500 K으로 상승함에 따라 SCR 영역에서는 감소하는 경향을, QNR 영역에서는 증가하는 경향을 보였다. 이는 온도 상승에 따른 공핍층 영역에서의 캐리어 흐름 증가와 대면적 공정 과정에서의 오염물 침투 및 dangling bond 등의 결함으로 인한 bulk 에서의 캐리어 재결합에 따른 것으로 판단된다. 또한 텍스처링 공정에 따른 태양전지 소자의 접합면 균일성 확인을 위한 I-V 측정 결과 SCR 영역에서는 40.87%의 평균 전류 분산을, QNR 영역에서는 10.59%의 평균 전류 분산을 보였다. 이는 텍스처링 공정으로 형성된 접합면에서의 피라미드 구조가 원인이 되는 것으로 판단되며, 전체 다이오드 전류 흐름에 영향을 주게 된다. 이러한 공정 과정에서의 결함 및 접합 구조로 인해 태양전지 다이오드는 일반 다이오드에 비해 비이상적인 전기적 특성을 보이게 된다.

  • PDF