• Title/Summary/Keyword: 결함 심각도

Search Result 2,779, Processing Time 0.029 seconds

A Metrics Set for Measuring Software Module Severity (소프트웨어 모듈 심각도 측정을 위한 메트릭 집합)

  • Hong, Euy-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.197-206
    • /
    • 2015
  • Defect severity that is a measure of the impact caused by the defect plays an important role in software quality activities because not all software defects are equal. Earlier studies have concentrated on defining defect severity levels, but there have almost never been trials of measuring module severity. In this paper, first, we define a defect severity metric in the form of an exponential function using the characteristics that defect severity values increase much faster than severity levels. Then we define a new metrics set for software module severity using the number of defects in a module and their defect severity metric values. In order to show the applicability of the proposed metrics, we performed an analytical validation using Weyuker's properties and experimental validation using NASA open data sets. The results show that ms is very useful for measuring the module severity and msd can be used to compare different systems in terms of module severity.

Software Quality Prediction based on Defect Severity (결함 심각도에 기반한 소프트웨어 품질 예측)

  • Hong, Euy-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.73-81
    • /
    • 2015
  • Most of the software fault prediction studies focused on the binary classification model that predicts whether an input entity has faults or not. However the ability to predict entity fault-proneness in various severity categories is more useful because not all faults have the same severity. In this paper, we propose fault prediction models at different severity levels of faults using traditional size and complexity metrics. They are ternary classification models and use four machine learning algorithms for their training. Empirical analysis is performed using two NASA public data sets and a performance measure, accuracy. The evaluation results show that backpropagation neural network model outperforms other models on both data sets, with about 81% and 88% in terms of accuracy score respectively.

Defect Severity-based Ensemble Model using FCM (FCM을 적용한 결함심각도 기반 앙상블 모델)

  • Lee, Na-Young;Kwon, Ki-Tae
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.12
    • /
    • pp.681-686
    • /
    • 2016
  • Software defect prediction is an important factor in efficient project management and success. The severity of the defect usually determines the degree to which the project is affected. However, existing studies focus only on the presence or absence of a defect and not the severity of defect. In this study, we proposed an ensemble model using FCM based on defect severity. The severity of the defect of NASA data set's PC4 was reclassified. To select the input column that affected the severity of the defect, we extracted the important defect factor of the data set using Random Forest (RF). We evaluated the performance of the model by changing the parameters in the 10-fold cross-validation. The evaluation results were as follows. First, defect severities were reclassified from 58, 40, 80 to 30, 20, 128. Second, BRANCH_COUNT was an important input column for the degree of severity in terms of accuracy and node impurities. Third, smaller tree number led to more variables for good performance.

Defect Severity-based Dimension Reduction Model using PCA (PCA를 적용한 결함 심각도 기반 차원 축소 모델)

  • Kwon, Ki Tae;Lee, Na-Young
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.79-86
    • /
    • 2019
  • Software dimension reduction identifies the commonality of elements and extracts important feature elements. So it reduces complexity by simplify and solves multi-collinearity problems. And it reduces redundancy by performing redundancy and noise detection. In this study, we proposed defect severity-based dimension reduction model. Proposed model is applied defect severity-based NASA dataset. And it is verified the number of dimensions in the column that affect the severity of the defect. Then it is compares and analyzes the dimensions of the data before and after reduction. In this study experiment result, the number of dimensions of PC4's dataset is 2 to 3. It was possible to reduce the dimension.

Severity Analysis of Traffic Accidents (교통사고 심각도 분석 연구)

  • 심관보;권기환
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10b
    • /
    • pp.409-409
    • /
    • 1998
  • 본 연구는 운전자 특성 및 교통사고 발생유형에 따른 사고 심각도(Severity)를 분석함으로써 교통사고를 유발키 쉬운 운전자 집단과 사고 발생시 위험도가 높은 사고유형을 규명하고자 하였다. 교통사고 위험집단 분석을 위한 운전자 특성은 성별, 차종, 연령 등을 대상으로 하였으며, 사고유형별 심각도 분석은 사고유형을 여덟 가지로 분류하고, 결과의 신뢰성 확보를 위하여 안전벨트 착용여부를 추가하여 상해정도와의 관계를 비교하였다. 로그-선형 모형 및 로짓 모형을 사용하여 카테고리 자료를 분석하였으며, 그 결과 위험집단 분석에서는 '20세 미만의 이륜차 운전자', '41세에서 50세까지의 택시운전자'가 가장 위험한 것으로, 또한 남자보다는 여자가 승용차, 택시, 이륜차 등에 관계되었을 때 위험한 것으로 조사되었다. 사고유형과 심각도와의 관계에서는 정면충돌 사고와 앞지르기 시 우회전시 사고가 기여위험도(Odds Multiplier)가 매우 높아 부상 또는 사망사고와 연계될 가능성이 큰 것으로 나타났다. 따라서 교통사고의 예방과 사고발생시의 심각도 경감을 위해서는 교통사고 취약계층으로 분석된 위험집단에 대한 교통안전 교육 및 홍보가 강화되어야 하고, 정면충돌 사고와 앞지르기 시 우회전시 발생하는 사고를 줄일 수 있는 방안이 연구되어야 할 것이다.

  • PDF

Analysis of Accident Factors of PM Traffic Accidents : Focused on Six Metropolitan Cities in Korea (pm 교통사고의 사고 요인 분석 : 6대광역시 중심으로)

  • Lee, Gun-Ju;Yoon, Byoung-Jo
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.253-254
    • /
    • 2023
  • pm이 편리한 교통수단으로 이용이 금증함에 따라 교통사고 또한 급증하였다. pm은 안전장치 부재로 유사교통수단인 자전거 보다 1.5배 이상의 사고 심각도를 보인다. 이에 pm 사고 심각도 요인을 분석하였다.분석 결과 사고 심각도를 감소 시키기 위해서는 pm과 차량의 교통이 분리되고, pm 안전 이용을 위한 교육이 필요한 것으로 판단된다.

  • PDF

Analysis of Traffic Crash Severity on Freeway Using Hierarchical Binomial Logistic Model (계층 이항 로지스틱모형에 의한 고속도로 교통사고 심각도 분석)

  • Mun, Sung-Ra;Lee, Young-Ihn
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.199-209
    • /
    • 2011
  • In the study of traffic safety, the analysis on factors affecting crash severity and the understanding about their relationship is important to be planning and execute to improve safety of road and traffic facilities. The purpose of this study is to develop a hierarchical binomial logistic model to identify the significant factors affecting fatal injuries and vehicle damages of traffic crashes on freeway. Two models on death and total vehicle damage are developed. The hierarchical structure of response variable is composed of two level, crash-occupant and crash-vehicle. As a result, we have gotten the crash-level random effect from these hierarchical structure as well as the fixed effect of covariates, namely odds ratio. The crash on the main line and in-out section have greater damage than other facilities. Injuries and vehicle damages are severe in case of traffic violations, centerline invasion and speeding. Also, collision crash and fire occurrence is more severe damaged than other crash types. The surrounding environment of surface conditions by climate and visibility conditions by day and night is a significant factor on crash occurrence. On the orher hand, the geometric condition of road isn't.

Prediction of Software Fault Severity using Deep Learning Methods (딥러닝을 이용한 소프트웨어 결함 심각도 예측)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.113-119
    • /
    • 2022
  • In software fault prediction, a multi classification model that predicts the fault severity category of a module can be much more useful than a binary classification model that simply predicts the presence or absence of faults. A small number of severity-based fault prediction models have been proposed, but no classifier using deep learning techniques has been proposed. In this paper, we construct MLP models with 3 or 5 hidden layers, and they have a structure with a fixed or variable number of hidden layer nodes. As a result of the model evaluation experiment, MLP-based deep learning models shows significantly better performance in both Accuracy and AUC than MLPs, which showed the best performance among models that did not use deep learning. In particular, the model structure with 3 hidden layers, 32 batch size, and 64 nodes shows the best performance.

Severity-based Fault Prediction using Unsupervised Learning (비감독형 학습 기법을 사용한 심각도 기반 결함 예측)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Most previous studies of software fault prediction have focused on supervised learning models for binary classification that determines whether an input module has faults or not. However, binary classification model determines only the presence or absence of faults in the module without considering the complex characteristics of the fault, and supervised model has the limitation that it requires a training data set that most development groups do not have. To solve these two problems, this paper proposes severity-based ternary classification model using unsupervised learning algorithms, and experimental results show that the proposed model has comparable performance to the supervised models.

Failure Risk Assessment of Reinforced Concrete Sewer Pipes on Crack-Related Defects (원심력철근콘크리관의 결함에 따른 심각도 평가 -균열 사례를 중심으로-)

  • Han, Sangjong;Shin, Hyunjun;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.731-741
    • /
    • 2013
  • CCTV inspection method has been used in Korea for more than 20 years, but there is no proper assessment system for sewer failure severity that considers the domestic circumstances. This study classified the defects caused by the overburden load of reinforced concrete sewer pipes depending on severity and developed defect code by analyzing the domestic CCTV inspection videos. The defect score was assigned to each defect code, and it was classified into 5 grades for the decision-making of repair and rehabilitation. The result of this study is expected to be useful for domestic CCTV inspectors to assess the sewer condition and helpful for managers to make a decision of repair and rehabilitation.