서비스 지향 아키텍처에서 서비스 제공자는 재사용 가능한 서비스를 개발하고 저장소에 배포하며, 서비스 사용자는 인터페이스를 통하여 블랙박스 컴포넌트 형태의 서비스를 사용한다. 저장소에 배포된 서비스는 시간이 지남에 따라 변경/진화될 가능성이 높고, 다양한 언어 또는 플랫폼을 사용하여 구현되는 이질성(Heterogeneity)을 가진다. 이런 이유로, 서비스 사용자는 서비스 내부 구조를 알기 힘들기 때문에, 서비스가 기능을 수행하는 도중 문제점이 발생하면 문제점을 식별하여 해결하는 등의 서비스 결함을 효과적으로 관리하는 것이 어렵다. 자율 컴퓨팅(Autonomic Computing, AC)은 사람의 개입을 최소화하고 시스템이 스스로의 결함을 관리하도록 설계하는 방식이다. AC는 시스템을 자율적으로 결함을 관리할 수 있는 주요 원칙들을 제안하고 있으므로, 서비스 결함 관리에 관한 기술적 이슈들은 AC의 기법들을 사용하여 해결될 수 있다. 본 논문에서는 SOA 환경에서 자율적으로 서비스의 결함을 관리하기 위한 이론적 모델인 Symptom-Cause-Actuator(SCA) 모델을 제시한다. SCA 모델은 의사가 환자를 치료하는 과정으로부터 유도된다. 먼저, 다섯 단계로 구성된 SCA 컴퓨팅 모델을 정의하고 SCA의 메타모델을 제안한다. 또한, SCA 모델의 저장소 역할을 하는 SCA 프로파일을 정의하고, SCA 프로파일에 저장되는 symptom, cause, actuator의 인스턴스와 이들 간의 의존 관계를 기계가 인식할 수 있는 형식으로 표현한다. 그리고, 서비스의 결함을 자율적으로 관리하는 컴퓨팅 모델의 다섯 단계를 수행하는데 필요한 알고리즘을 상세하게 기술한다. 마지막으로, SCA 모델의 실행 가능성을 보여주기 위하여, SCA 프로파일과 알고리즘을 구현한 프로토타입을 '비행기 예약 시스템'에 적용하는 사례 연구를 수행한다.
PC에서 모니터나 본체에서 전원인가 후 아무런 외부적인 반응이 없는 경우, 이것이 하드웨어 장애인지 아니면 소프트웨어 장애인지 일반 사용자의 경우 확인이 어려운 상황이다. 본 연구는 이러한 경우 컴퓨터 하드웨어 장애 인지 소프트웨어 장애인지를 구별하고 하드웨어 장애인 경우 어떤 하드웨어가 장애인지를 알려주는 모듈을 개발하였다. 즉, 본 연구는 일반 PC의 OS 부팅 전에 하드웨어 장애로 인한 부팅 실패시 하드웨어 장애를 인식하는 모듈을 개발한 것으로 컴퓨터 PCI slot에 장착되며 컴퓨터 전원 인가시 CPU는 메인보드 롬바이어스 내용을 순차적으로 처리하는데 특정 하드웨어 장애시 순차적 진행을 중단한다. 본 연구의 개발 모듈은 이러한 경우 롬바이어스의 중단 번지를 인식하여 장애 하드웨어를 사용자에게 알려주는 역할을 한다. 개발된 하드웨어 장애인식 모듈은 모의 평가 시험을 통해서 정확하게 인식할 수 있었다.
In this study, researchers developed the estimative algorithm for artificial defect in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages : Crack, Delamination and Normal. According to the results, we were confirmed that estimative algerian was provided the recognition rates of 75.7% (for Crack) and 83.4% (for Delamination) and 87.2 % (for Normal).
A neural network approach has been developed to determine the depth of a surface breaking crack in a steel plate from ultrasonic backscattering data. The network is trained by the use of feedforward three-layered network together with a back-scattering algorithm for error correction. The signal used for crack insonification is a mode converted 70$^{\circ}$transverse wave. A numerical analysis of back scattered field is carried out based on elastic wave theory, by the use of the boundary element method. The numerical data are calibrated by comparison with experimental data. The numerical analysis provides synthetic data for the training of the network. The training data have been calculated for cracks with specified increments of the crack depth. The performance of the network has been tested on other synthetic data and experimental data which are different from the training data.
제조물책임(Product Liability, 이하 PL)법은 2002년 7월 1일부터 국내에서 시행되고 있으며, 대기업뿐만 아니라 중소기업에서도 자사제품에 대한 신뢰성과 제품향상을 위해 많은 관심을 갖고 있다. PL법 환경에서 전력기기에 대한 제조결함과 사고의 연관성은 PL법의 적용대상이므로 국제화시대에 제품결함에 의한 전력설비 사고발생시 이의 정확한 원인규명 등을 통하여 기업에 있어서는 동일사고 예방 및 제품의 신뢰성 향상과 소비자에 있어서는 피해구제 마련 등 PL분쟁시 정확한 사고원인규명과 처리기준에 대한 자료구축이 필요한 실정이다.
대한전기학회 2008년도 Techno-Fair 및 합동춘계학술대회 논문집 전기물성,응용부문
/
pp.145-146
/
2008
초고압 케이블에서 발생하는 부분방전을 측정하기 위해 다양한 방법들이 연구 개발되어왔다. 최근에는 초고압 케이블의 설치 후 시행하는 준공시험에 있어 부분방전 측정을 필수적으로 할 만큼 부분방전 진단기술의 중요성이 부각되고 있는 실정이며, 디지털 측정기술을 통한 부분방전자동측정 기술이 많이 제안되고 있다. 특히, 비전문가들만으로도 진단 및 감시가 가능하도록 하는 자동 패턴 분류에 대한 다양한 연구에 활발히 보고되고 있다. 본 논문에서는 초고압 케이블에서 발생되는 결함을 내부, 외부, 노이즈의 세 가지로 분류하고 PRPD(Phase Resolved Partial Discharge) 형태로 모의된 실험데이터와 현장에서 축적된 데이터를 선별하여 다양한 통계치를 추출하였고, 결함별 구분이 용이하지 않은 통계치를 제외한 값들을 Neural Network 방법으로 학습시켰다. 학습된 가중치 값을 LabView로 작성된 프로그램에 사용하여 변전소 내 EBG에서 검출한 부분방전 측정 결과에 적용하였다.
Hidden Markov Model(HMM) has been widely used in speech recognition, however, its use in machine condition monitoring has been very limited despite its good potential. In this paper, HMM is used to recognize rotor fault pattern. First, we set up rotor kit under unbalance and oil whirl conditions. Time signals of two failure conditions were sampled and translated to auto power spectrums. Using filter bank, feature vectors were calculated from these auto power spectrums. Next, continuous HMM and discrete HMM were trained with scaled forward/backward variables and diagonal covariance matrix. Finally, each HMM was applied to all sampled data to prove fault recognition ability. It was found that HMM has good recognition ability despite of small number of training data set in rotor fault pattern recognition.
Ultrasonic inspection of defects has been focused on the existence of defect in structural material and need has much time and expenses in inspecting all the coordinates (x, y) on material surface. Neural networks can have an application to coordinates (x, y) of defects by multi-point inspection method. Ultrasonic inspection modeling is optimized by neural networks Neural networks has trained training example of absolute and relative coordinate of defects, and defect pattern. This method can predict coordinates (x, y) of defects within engineering estimated mean error $\psi$.
기계기술의 지속적인 발달과 신기술의 개발로 인해 산업전반의 기반 기술인 기계 장치산업은 점점 복잡해지고 또한 다양화되면서 장치시설을 건전하고 신뢰성 있게 유지하고 관리하는 문제가 중요하게 대두되고 있다. 이중 가스 및 오일을 운송하는 배관은 대부분 지하에 매설되어 있고, 다양한 환경에 위치하여 있는데, 이러한 배관은 설치한지 오래되면 여러 가지 환경적 영향에 의해 부식과 같은 결함이 발생되고(Fig. 1과 Fig 2 참조) 이러한 결함이 성장하여 임계크기에 도달하여 대형 재난으로 발전하는 사고가 종종 보고 되고 있으며 이로 인한 경제적, 사회적 손실이 지대하기 때문에 매우 중요하게 인식되고 있다.(중략)
It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.