• Title/Summary/Keyword: 결핍 맨틀

Search Result 34, Processing Time 0.021 seconds

스피츠버겐 페리도타이트에 대한 Lu-Hf 및 Re-Os 동위원소 시스템의 활용: 맨틀-지각간의 성인적 연계성에 대한 고찰

  • Choe, Seong-Hui;Shzuki, K.;Mukas, S.B.;Lee, Jong-Ik
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.23-23
    • /
    • 2010
  • 스발바드 서측에 위치하는 스피츠버겐 하부의 암석권맨틀의 분화시기를 규명하기 위하여, 두 개의 독립적인 방사성동위원소 시스템인 Lu-Hf과 Re-Os 시스템을 스피넬 페리도타이트(spinel peridotite)에 활용하였다. 전암에 대한 Re-Os 계통(Re-Os 에러크론, 알루미노크론, Re-결핍연대 등)은 연구지역의 페리도타이트가 대류하는 맨틀로부터 고기원생대/후기시생대에 분리되었음을 지시한다. 흥미롭게도 이런 연대는 페리도타이트내 단사휘석 결정들에 대하여 얻어진 Lu-Hf 에러크론 연대와 일치한다. 또한 시료 내에 지구화학적으로 기록된 현무암질 액의 결핍정도 역시 계통적으로 위의 연대를 지지한다. 위 연대는 스피츠버겐 서측부에 보고된 가장 오래된 지각의 연대와 일치한다. 따라서 연구지역의 암석권맨틀이 연약권으로부터 분리된 것은 접촉하고 있는 지각과 동시기적으로 이루어진 사건임을 알 수 있다. 연구지역은 팔레오세 이래로 복잡한 지구조적 응력장 변화(압축에서 신장환경으로의 변화)를 겪었다. 그럼에도 불구하고 지각과 커플링된 암석권맨틀이 현존한다는 것은 연구지역내 응력장변화가 대규모의 암석권 디라미네이션(delamination)을 유발하지는 않았다는 것을 의미한다. 그러므로 북극권의 화산활동을 설명하기 위하여 북극권 상부맨틀에 존재한다고 알려진 듀팔(DUPAL) 같은 부화된 물질의 성인으로 일부의 연구자들이 주장하여 온 디라미네이션된 암석권맨틀의 존재는 설득력이 없다고 판단된다.

  • PDF

Sr, Nd and Pb Isotopic Compositions of the Pyeongtaek-Asan Alkali Basalts: Implication to the Contrasting Compositional Boundary for the Mantle beneath Korean Peninsula (평택-아산 알칼리 현무암의 Sr, Nd 및 Pb 동위원소 조성: 한반도 아래 맨틀의 대조적인 조성 경계에 대한 의미)

  • Park, Kye-Hun;Cheong, Chang-Sik;Jeong, Youn-Joong
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.144-153
    • /
    • 2008
  • Sr, Nd, Pb isotopic compositions of the Cenozoic basaltic rocks distributed in Pyeongtaek-Asan area display significantly enriched values compared with mid-ocean ridge basalts just like other Cenozoic basalts of Korea. The isotopic compositions of most of the Cenozoic basaltic rocks of Korea including those from Pyeongtaek-Asan area can be explained as mixing between enriched mantle component with relatively low $^{206}Pb/^{204}Pb$ ratios and depleted mantle component. In contrast, Jejudo basalts can be explained as mixing between enriched mantle component with realtively higher $^{206}Pb/^{204}Pb$ ratios and depleted mantle componsnt. Combined with that very similar division of enriched mantle components is applied to the Cenozoic basalts of northeast China and southeast China, it is suggested that subcontinental lithospheric mantle of central and southern parts of Korea represents eastern extension of North China Block and South China Block respectively. The indentation model for the late Paleozoic to early Mesozoic continental collision of China contradicts to such an interpretation, because it cannot explain occurrence of subcontinental lithospheric mantle component of South China Block-affinity under the Jejudo area. Instead, it is more probable that suture zone of the two continental blocks crosses between central and southern Korea and its location is further south from the Pyeongtaek-Asan area. Such distinct location compared with Imjingal belt, supposedly collisional boundary suggested before, suggests that mantle boundary may not be coincide with crustal boundary for the continental collision.

Sr-Nd-Pb Isotopic Compositions of Lavas from Cheju Island, Korea (제주도 화산암류의 Sr-Nd-Pb 동위원소 연구)

  • 박준범;박계헌;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.89-107
    • /
    • 1996
  • Sr, Nd and Pb isotopic characteristics of alkaline lavas and tholeiites in Cheju Island show that the isotopic compositions of the former slightly overlap, but have relatively more depleted than the latter. However, in viewpoint of the two eruptional stratigraphies of tholeiites, the isotopic compositon of the older one is similar to those of alkaline rocks in Lava Plateau Stage after Lee (1982). These suggest that the parental magmas of alkaline lavas and tholeiites might have originated from the homogenous mantle sourve and that the characteristics of the mantle source to be partially melted might be different between the eruption stages. The isotopic signatures of the bolcanic rocks in Cheju Island overlap with those in Samoa Islands and South China Basin, indicating the DMM-EM IImixing trend. This is distingushed from the DMM-EM I trend of the Cenozoic volcanic rocks in Korea except for cheju Island and Northeastern China. The modelled binary mixing calculation between MM and EM IImaterials indicates that the mantle source of the volcanic rocks in Cheju Island has been mixed about less than 10% of enriched mantle material (EM II) with depleted mantle material (DMM). Concerned with the indentation model between North China Block (NCB) and South China Block (SCB) after Yin an Nie (1993), we suggest that the distinct isotopic features of DMM-EM I and DMM-EM IIof the Cenozoic volcanic rock in Korea as well as China can be explained by the difference of the nature of subcontinental lithospheric mantle as enriched mantle materials, i.e. EM I of NCB, while EM II of SCB.

  • PDF

Geochemical Characteristics of Clinopyroxenes in the Upper Mantle Rocks under the Baegryeong Island and the Boeun (백령도와 보은 지역의 상부맨틀암석 내의 단사휘석의 지화학적 특징)

  • Kil Young Woo;Lee Seok Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • Modal and chemical compositions of clinopyroxnes in spinel peridotites from the Baegryeong Island and the Boeun, enclosed in Miocene alkali basalt, are important for understanding the pre-eruptive temperature condition and chemical processes such as mantle depletion and enrichment. All spinel peridotites show transitional texture between protogranular and porphyroclastic textures. Temperature ranges of spinel peridotites from the Baegryeong Island and the Boeun at 15 kb are 773∼1188℃ and 705∼1106℃, respectively. The spinel peridotites from the Baegryeong Island and the Boeun have undergone the 1∼10% and 1∼4% fractional melting, which were determined by using primitive mantle-normalized Y and Yb of clinopyroxenes. LREE enrichment patterns of clinopyroxene indicate that these rocks from both areas have undergone cryptic mantle metasomatism without new minerals.

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.

Petrography and geochemistry of the Devonian ultramafic lamprophyre at Sokli in the northeastern Baltic Shield (Finland) (북동 Baltic Shield (핀란드) Sokli 지역의 데본기 초염기성 lamprophyre의 암석학 및 지구화학)

  • Lee, Mi-Jung;Lee, Jong-Ik;Jaques Moutte;Kim, Yeadong
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.170-183
    • /
    • 2003
  • The Sokli complex in the northeastern Baltic Shield (Finland) forms a part of the extensive Devonian Kola Alkaline Province. The complex contains ultramafic lamprophyres occurring as dikes of millimetric to metric thickness. The Sokli ultramafic lamprophyres have petrographical and geochemical affinities with aillikite. High concentrations of Cr and Ni with low Al$_2$O$_3$ content of the Sokli aillikites indicate a strongly depleted harzburgitic source. However, compared to the kimberlites, the lower Cr and Ni contents and mg-number with weaker HREE depletion of the Sokli aillilkites imply a smaller proportion of garnet in the source and thus suggest a shallower melting depth of the source. In order to account for high concentrations of all incompatible elements and LREEs, with high volatile content (especially CO$_2$), an additional enriched material is thought to have been incorporated into the Sokli aillikite source. An anomalous enrichment of K in the Sokli aillikites, compared to nearby ultrapotassic rocks and world-wide ultramafic lamprophyres, indicate a presence of K-rich phase (probably phlogopite) in the source mantle.

Petorshemical Study on the Mantle Xwnoliths in alkli basalts from S. Korea: P-T Regime of Upper Mantle (남한의 알카리 현무암에 분포하는 맨틀포획암의 암석화학적 연구: 상부맨틀포획암의 암석화학적 연구: 상부맨틀의 온도 및 압력 추정)

  • 이한영
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.104-123
    • /
    • 1995
  • Mantle xenoliths in alkali basalt from Boun, Gansung area, and Baegryung island in S. Korea are spinel lherzolites composed of olivine, orthopyroxene, clinopyroxene, and spinel. The xenoliths generally show triple junctions among grams, kink-banding in olivine and pyroxenes, and protogranular and eqigranular textures having m orlentatron of specific direction. Anhedral brown spinels are disseminated in the intergranular spaces of minerals. Mineral compositions are very homogeneous without compositional zonation from rim to core in grains regardless different locahties. Olivine shows Fo. component of 89.0-90.2 and low CaO of 0.03-0.12wt%, orthopyroxene is enstatite with En component of 89.0 - 90.0 and $Al_2O_3$ of 4-5wt%, and clinopyroxene is diopside having En. component of 47.2-49.1 and $Al_2O_3$ of 7.42-7.64wt% from Boun and 4.70-4.91wt% from Baegryung showing local variation. Spinel shows the distinctive negative trend with increasing of A1 and decreasing of Cr, and Mg value and Cr number are 75.1-81.9 and 8.5-12.6, respectively. To estlmate T and P for these mantle xenoliths pyroxene-geothermometers (Wood and Banno, 1973; Wells, 1977; Mercier, 1980; Sachtleben and Seck, 1981; Bertrand and Mercier, 1985; Brey and Kohler, 1990) and Al-solubility geobarometer (Mercier, 1980; Lane and Ganguly, 1980) are used. Temperatures of Mercier (1980) and Sachtleben and Seck (1981) are compatible and equilibrium temperatures of xenoliths, average value of these two, aiie from $970^{\circ}C$ to $1020^{\circ}C$, and equihbrium pressures derived from Mercier (1980) are in the range of 12-19 Kb (42-63 Km). These temperatures and pressures seem to be reasonble wlth the consideration of Al-isopleths in MAS system (Lane and Ganguly, 1980) and Fe effect on Al-solubility in orthopyroxene (Lee and Ganguly, 1988). Equllibrium of temperatures and pressures of xenoliths in P-T space belong to ocenanic geothem among the Mercier's mantle geotherms (1980) and are completely different from continental geotherms of S. Africa (Lesotho) and S. India having different geologcal ages. anera1 compositions of spmel-lherzohtes in S. Korea and eastern China are primitwe and paleogeothems of both are very s~mllar, but degrees of depletion of upper mantle could be locally different from each other since eastern China has various depleted xenoliths due to different degrees of partial melting.

  • PDF

Petrology of the Tertiary Basaltic Rocks in the Yeonil and Eoil Basins, Southeastern Korea (한반도 동남부 제3기 연일, 어일분지에 나타나는 현무암질암의 암석학적 연구)

  • Shim, Sung-Ho;Park, Byeong-Jun;Kim, Tae-Hyeong;Jang, Yun-Deuk;Kim, Jung-Hoon;Kim, Jeong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • Eoil basalt in the Eoil basin and Yeonil basalt and its related volcanic rocks in Guryongpo and Daebo area were researched and analyzed to purse the tectonic settings and magma characteristics of those Tertiary volcanic rocks in the south-east Korean peninsula. It is highly suggested that zoning, resorption and sieve texture in plagioclase and reaction rim in pyroxene indicate unstable tectonic environments and complex volcanism in the study area. Volcanic rocks from Janggi basin are identified as basalt and basaltic andesite in TAS diagram and sub-alkaline series in terms of magma differentiation. $Na_2O$ and $K_2O$ show positive trend however FeO, CaO, MgO and $P_2O_5$ indicate negative trend in Harker variation diagram with $SiO_2$. Basaltic rocks from Eoil area are identified as calc-alkaline series in AFM diagram and show medium K series calc-alkaline in $K_2O-SiO_2$ diagram. Compatible trace elements of Co, Ni, V, Zn, and Sc in Yeonil basalt show negative trend with crystallization but incompatible trace element of Ba, Rb show positive trend with $SiO_2$ 0.81~1.00 of $Eu/Eu^*$ value suggests minor effect of plagioclase fractionation in Yeonil basaltic rocks. Plagioclase composition of Eoil basalt ranges from $An_{63.46-98.38}\;Ab_{1.62-32.96}\;Or_{0-3.58}$ (anorthite-labradorite) in core to $An_{40.89-82.44}\;Ab_{17.10-46.43}\;Or_{0-12.68}$ (bytownite-labradorite) in rim. $^{87}Sr/^{86}Sr$ and 143Nd;t44Nd ranges 0.704090~0.704717 and 0.512705~0.512822 respectively. Negative linear trends in 87Sr/86Sr and $^{143}Nd/^{144}Nd$ correlation diagram indicate that magma produced Yeonil basalt and basaltic andesite has been originated as partial melting product of mantle wedge by subducting Pacific plate affected by oceanic crust with less effect of continental crust indicating calc-alkaline magma characteristics.

Lithospheric Mantle beneath the Korean Peninsula: Implications from Peridotite Xenoliths in Alkali Basalts (우리나라 상부암석권 맨틀: 페리도타이트 포획암으로부터의 고찰)

  • Choi, Sung-Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.235-247
    • /
    • 2012
  • Peridotite xenoliths hosted by alkali basalts from South Korea occur in Baengnyeong Island, Jeju Island, Boeun, Asan, Pyeongtaek and Ganseong areas. K-Ar whole-rock ages of the basaltic rocks range from 0.1 to 18.9 Ma. The peridotites are dominantly lherzolites and magnesian harzburgites, and the constituent minerals are Fo-rich olivine ($Fo_{88.4-92.0}$), En-rich orthopyroxene, Di-rich clinopyroxene, and Cr-rich spinel (Cr# = 7.8-53.6). Hydrous minerals, such as pargasite and phlogopite, or garnet have not been reported yet. The Korean peridotites are residues after variable degree of partial melting (up to 26%) and melt extraction from fertile MORB mantle. However, some samples (usually refractory harzburgites) exhibit metasomatic enrichment of the highly incompatible elements, such as LREE. Equilibration temperatures estimated using two-pyroxene geothermometry range from ca. 850 to $1050^{\circ}C$. Sr and Nd isotopic compositions in clinopyroxene separates from the Korean peridotites show trends between depleted MORB-like mantle (DMM) and bulk silicate earth (BSE), which can be explained by secondary metasomatic overprinting of a precursor time-integrated depleted mantle. The Korean peridotite clinopyroxenes define mixing trends between DMM and EM2 end members on Sr-Pb and Nd-Pb isotopic correlation diagrams, without any corresponding changes in the basement. This is contrary to what we observe in late Cenozoic intraplate volcanism in East Asia which shows two distinct mantle sources such as a DMM-EM1 array for NE China including Baengnyeong Island and a DMM-EM2 array for Southeast Asia including Jeju Island. This observation suggests the existence of large-scale two distinct mantle domains in the shallow asthenosphere beneath East Asia. The Re-Os model ages on Korean peridotites indicate that they have been isolated from convecting mantle between ca. 1.8 and 1.9 Ga.

Origins of Clinopyroxenes in Alkaline Basalts from Jeju Island (제주도 알칼리 현무암에 산출되는 단사휘석의 기원)

  • Yang Kyounghee;Hwang Byoung-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.33-43
    • /
    • 2005
  • Three types of clinopyroxenes in alkali basaltic rocks from Jeju Island can be identified on the basis of geochemical and textural data. Type Ⅰ is Cr-rich diopside in spinel peridotites from the upper mantle. Type Ⅱ is augite in fine-grained pyroxenites which are possibly either magmatic vein or metamorphic segregations owing to anatexis of the upper mantle. The augite of Type Ⅱ contains high Ca and Mg and relatively low Ti. Type Ⅲ is thought to be either cumulates or cognate phenocrysts and can be subdivided into Ⅲa, Ⅲb, and Ⅲc based on their occurrence mode. Clinopyroxenes of Type Ⅰ have the highest Mg# and Si and the lowest Ti, whereas those of Type Ⅲhave lower Mg#와 Si and higher Ti. These geochemical characteristics indicate that (Ti+Al/sup Ⅵ/)/Si and Al/sup Ⅵ//Al/sup Ⅵ/ increase from Type Ⅰ to Type Ⅲ. It is possibly interpreted that Type Ⅰ is of the highest pressure origin and Type Ⅲ of the lowest. Fractionation of high-pressure clinopyroxenes would result in evolved undersaturated alkali-enriched liquids, probably producing the alkali-enriched host basaltic rocks in Jeju Island.