북동 Baltic Shield (핀란드) Sokli 지역의 데본기 초염기성 lamprophyre의 암석학 및 지구화학

Petrography and geochemistry of the Devonian ultramafic lamprophyre at Sokli in the northeastern Baltic Shield (Finland)

  • 발행 : 2003.12.01

초록

북동 발틱 순상지의 데본기 콜라 알칼리 암석구의 일부에 해당하는 속리복합체는 암맥상으로 산출되는 다양한 규모의 초염기성 림프로파이어를 동반한다. 속리 초염기성 럼프로파이어(lamprophyre)는 암석학적 그리고 지구화학적 특성에 의해 아이리카이트(aillikite)로 분류된다. 속리 아아리카이트가 갖는 높은 Cr과 Ni 함량 그리고 낮은 $Al_2$O$_3$ 함량은 이 암석이 결핍된 맨틀의 하쯔버자이트(harzburgite)로부터 유래되었음을 지시한다. 그러나 킴벌라이트(kimberlite)와 비교하면 Cr, Ni의 한량과 mg-number가 낮고 중희토류원소의 결핍정도가 약한 특징을 보이는데, 이는 기원맨틀의 석류석 함량이 적었고 따라서 용융심도도 킴벌라이트보다 앝았다는 것을 지시한다. 속리 아이리카이트에 함유된 매우 높은 불호정성원소들과 휘발성 성분(주로 $CO_2$)은 근본적으로 결핍된 기원맨틀에 부화된 물질이 첨가되어야 함을 지시한다. 또한 속리 아이리카이트의 특징적으로 높은 K함량으로부터 기원맨틀에 금운모 같은K함량이 높은 광물이 존재하였을 것이라고 추정할 수 있다.

The Sokli complex in the northeastern Baltic Shield (Finland) forms a part of the extensive Devonian Kola Alkaline Province. The complex contains ultramafic lamprophyres occurring as dikes of millimetric to metric thickness. The Sokli ultramafic lamprophyres have petrographical and geochemical affinities with aillikite. High concentrations of Cr and Ni with low Al$_2$O$_3$ content of the Sokli aillikites indicate a strongly depleted harzburgitic source. However, compared to the kimberlites, the lower Cr and Ni contents and mg-number with weaker HREE depletion of the Sokli aillilkites imply a smaller proportion of garnet in the source and thus suggest a shallower melting depth of the source. In order to account for high concentrations of all incompatible elements and LREEs, with high volatile content (especially CO$_2$), an additional enriched material is thought to have been incorporated into the Sokli aillikite source. An anomalous enrichment of K in the Sokli aillikites, compared to nearby ultrapotassic rocks and world-wide ultramafic lamprophyres, indicate a presence of K-rich phase (probably phlogopite) in the source mantle.

키워드

참고문헌

  1. Geochem. Int. v.31 Plutonic mineral assemblages in Plaeozoic dykes and explosion pipes of the alkaline province of the Baltic Shield Arzamastsev,A.A.;Dahlgren,S.
  2. Lithos v.51 Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types Beard,A.D.;Downes,H.;Hegner,E.;Sablukov,S.M. https://doi.org/10.1016/S0024-4937(99)00074-2
  3. Contrib. Mineral. Petrol. v.130 Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia : implications for the petrogenesis of kimberlite and melilitites Beard,A.D.;Downes,H.;Hegner,E.;Sablukov,S.M.;Vetrin,V.R.;Balogh,K.
  4. Lithos v.39 Petrogenesis of Devonian lampro-phyres and carbonatite minor intrusions, Kandalaksha Gulf (Kola Peninsula, Russia) Beard,A.D.;Downes,H.;Vetrin,V.;Kempton,P.D.;Maluski,H. https://doi.org/10.1016/S0024-4937(96)00020-5
  5. Can. Mineral. v.34 Alkaline rocks of the Turiy Peninsular, Russia, including type-locality turjaite and turjite: a review Bell,K.;Dunworth,E.A.;Bulakh,A.G.;Ivanikov,V.V.
  6. Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa, In Mantle metasomatism Erlank,A.J.;Waters,F.G.;Hawkesworth,C.J.(ed.);Haggerty,S.E.;Allsopp,H.L.;Richard,R.S.;Menzies,M.A.(ed.)
  7. Indian Acad. Sci. Proc. v.99 A review and assessment of experiments on kimberlites, lamproites and lamprophyres as a guide to their origin Foley,S.F. https://doi.org/10.1007/BF03186373
  8. Lithos v.28 Vein-plus-wall rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas Foley,S.F. https://doi.org/10.1016/0024-4937(92)90018-T
  9. Nature v.336 Mantle metasomatism by ephemeral carbonatite melts Green,D.H.;Wallace,M.E. https://doi.org/10.1038/336459a0
  10. Pyrochlore, apatie and amphibole: Distinctive minerals in carbonatite, In Carbonatites, Genesis and Evolution Hogarth,D.D.;K.Bell(ed.)
  11. Petrology v.1 Kimberlites and related rocks of the Kola region Kalinkin,M.M.;Arzamastev,A.A.;Polyakov,I.V.
  12. Geochem. Int. v.31 Geochemistry of kimberlite-like rocks from dykes and explosion pipes in carbonatite complexes Kapustin,Y.L.
  13. Alkaline rocks and carbonatites of the World: Part 2. Former USSR Kogarko,L.N.;Kononova,V.A.;Orlova,M.P.;Woolley,A.R.
  14. Lithos v.30 The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr ages define 380-360 Ma age range for all magmatism Kramm,U.;Kogarko,L.N.;Kononova,V.A.;Vartiainen,H. https://doi.org/10.1016/0024-4937(93)90004-V
  15. The Caledonian ultramafic alkaline rocks and carbonatites of the Kola Peninsula and Northern Karelia Kukharenko,A.A.;Orlova,M.P.;Bulakh,A.G.;Bagdasarov,E.A.;Rimskaya-Korsakova,O.M.;Nefedov,E.I.;Ilinskiy,G.A.;Sergeev,A.S.;Abakumova,N.B.
  16. J. Petrol. v.39 Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system $$CaO-(Mgo+FeO^*)-(Na_2O+K_2O)-(SiO_2+Al_2O_3+TiO_2)-Co_2$$ Lee,W.J.;Wyllie,P.J. https://doi.org/10.1093/petrology/39.11.2005
  17. Labrador. Can. J. Earth Sci. v.23 Alkaline mafic and ultramafic lamprophyres from Aillik Bay area Malpas,J.;Foley,S.F.;King,A.F. https://doi.org/10.1139/e86-178
  18. Nature v.302 Nd and Sr isotopes in Kimberlites and lamproites from western Australia : an enriched mantle origin McCulloch,M.T.;Jaques,A.L.;Nelson,D.R.;Lewis,J.D. https://doi.org/10.1038/302400a0
  19. Metasomatic and enrichment processes in lithospheric peridotites, and effect of asthenosphere-lithos-phere interaction. In Mantel metasomatism Menzies,M.A.(ed.);Rogers,N.;Tindle,A.;Hawkesworth,C.J.(ed.)
  20. Proc. Sixth Int. Kimberlite Conf. v.1 Suggestions for revisions to the terminology of kimberlites and lamprophyres from a genetic view point Mitchell,R.H.
  21. Kimberlites, Orangeites and Related Rocks Mitchell,R.H.
  22. Montana. J. Petrol. v.28 Petrology of lamproites from Smokey Butte Michell,R.H.;Platt,R.G.;Downey,M. https://doi.org/10.1093/petrology/28.4.645
  23. Geochim. Cosmochim. Acta v.38 Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites Nakamura,N. https://doi.org/10.1016/0016-7037(74)90149-5
  24. Kimberlites I : kimberlites and Related Rocks Spanish and West Australian lamproites: aspects of wole rock geochemistry. Nixon,P.H.Tthirlwall,M.F.;Buchley,R.;Davies,C.J.;J.Komprobst(ed.)
  25. Geol. Soc., London, Spec. Pub. v.30 The nature and origin of the lamprophyres: an overview. In Alkaline Igneous Rocks Rock,N.M.S.;J.G.Fitton(ed.);B.G.J.Upton(ed.) https://doi.org/10.1144/GSL.SP.1987.030.01.09
  26. J. Petrol. v.27 The nature and origin of the lamprophyres: alnoites and allied rocks Rock,N.M.S.
  27. Lithos v.28 Phlogopite in the generation of melilitites from Namaqualand, South Africa and implications for element fractionation processes in the upper mantle Rogers,N.W.;Hawkesworth,C.J.;Palacz,Z.A. https://doi.org/10.1016/0024-4937(92)90014-P
  28. Sixth Int. kimberlite Conf. Petrochemical series of kimberlite rocks of the Arkhangelsk Province Sablukov,S.M.
  29. Bull. Geol. Surv. Finland v.313 The petroraphy, mineralogy and petrochemistry of the Sokli carbonatite massif northern Finland Vartiainen,H.
  30. Bull. Geol. Soc. Finland v.50 Alkaline lamprophyres from the Sokli Complex, northern Finland Vartiainen,H.;Kresten,P.;Kafkas,Y.
  31. Econ. Geol. v.74 Geologial characteristics of the Sokli Carbonatite Complex, Finland Vartiainen,H.;Paarma,H.
  32. Contrib. Mineral. Petrol. v.119 Melilitites: partial melts of the thermal boundary layer? Wilson,M.;Rosenbaum,J.M.;Donworth,E.A. https://doi.org/10.1007/BF00307280
  33. Contrib. Mineral. Petrol. v.70 Elemental and Sr isotope variations in basic lavas from Iceland and surrounding ocean floor: The nature of mantle source inhomogeneities Wood,D.A.;Joron,J.L.;Treuil,M.;Norry,M.;Tarney,J. https://doi.org/10.1007/BF00375360
  34. Proc. 2nd Int. Symp. Devonian sytem Laurussia-the old red continent Ziegler,P.A.