기후변화 시나리오 및 계절예측 자료를 포함한 기후정보를 수자원 분야에 활용하기 위해서는 기후정보의 시 공간적인 상세화(donwscaling)을 필요로 한다. 상세화의 경우 역학적 상세화와 통계학적 상세화로 구분될 수 있으며, 통계학적 상세화를 위해서는 대상 지역의 기후특성을 대표할 수 있는 장기 관측 자료의 확보가 중요하다. 국내의 경우에는 자동기상관측장비(Automatic Weather System, AWS)와 종관기상관측장비(Automatic Synoptic Observation System, ASOS)로 부터 수집된 기상관측자료를 사용할 수 있으나 기후변화 시나리오의 통계적 상세화를 위해서는 30년 이상의 자료 기간을 포함하는 ASOS 자료가 적합하다. 하지만 개발도상국과 같이 기상관측기반이 열악한 지역에서는 잦은 결측 등으로 인하여 품질이 좋은 관측자료의 획득이 어려운 상황이다. 따라서 본 연구에서는 측이 포함된 장기 기상관측 자료로부터 대상 지역의 기후특성을 재현할 수 있도록 기본적인 QC(Quality Control)을 거쳐 결측 자료를 보완할 수 있는 기법 및 R 기반패키지를 개발하여 적용성을 평가하였다. 개발된 기법의 적용성 평가를 위해서 기상청에서 QC를 통해 제공하고 있는 60개 ASOS 지점의 관측자료 중 강수량과 기온 변수를 사용하였다. 최대 50%까지의 현실적인 결측 패턴을 임의로 생성하기 위해 실제 개발도상국 관측자료의 일단위 결측 패턴을 이용하였다. 자료의 QC는 관측일 누락/중복 및 문자형 관측값 등 기본적인 오류 검사, 기온의 경우 물리적 허용 범위에 대한 검사, 최고기온과 최저기온의 비교 및 계측기 오작동에 의한 동일한 값의 반복 등을 포함한 내적 일치성 검사를 우선적으로 수행한다. 이후 결측값에 대해서 인근 기상관측소와의 상관성 분석 결과를 기반으로 결측값을 채우고, 최종적으로는 다양한 위성자료 및 재분석 자료 중에서 일단위 기후특성의 재현성 평가를 통해 선정된 격자형 자료와의 상관성 분석 결과를 기반으로 결측값을 보정하였다. 기온의 경우는 결측률이 높더라도 월평균 기후특성에 큰 영향을 미치지 않았지만 강수의 경우에는 5% 이상의 결측이 발생하는 경우 월평균 강수량에 영향을 미쳐 지역의 강수량을 과소 추정하는 결과를 보였다. 개발된 QC 기법을 강수 자료에 적용한 결과 월평균 기후특성을 잘 복원하는 결과를 보였지만, 일단위 강우 사상의 재현에 있어서는 미흡한 결과를 보였다.
강우자료는 수문 해석에 있어 가장 기본이 되는 입력 자료이며, 다양한 원인에 의해 결측이 발생된다. 본 연구에서는 복잡한 자연현상 문제 해결에 그 응용성이 입증된 신경망 기법을 이용하여 결측 처리된 강우를 추정하기 위해서 소양강댐 유역 12개 강우량 관측소를 대상으로 신경망 모형을 구축하였으며, 모형의 성능 평가를 위해 실무에서 가장 많이 사용되고 있는 우량 보정 방법인 역거리법(RDS)과 산술평균법(AMM)으로 추정한 값과 비교하여 신경망을 이용한 추정 방법의 우수성을 보였다. 그리고 온라인상에서 보다 신뢰성 있는 수문자료를 재난관련 유관기관으로 전송하기 위해서 신경망 모형을 이용한 상시 실시간 보정이 가능하도록 신경망 학습기로 구성된 자동 보정시스템을 제안하였다.
분포형 모형이 개발되어 지면서 이러한 유역의 공간적인 특성을 고려한 정확한 강우 자료와 조밀한 계측망의 요구는 더욱 커지고 있다. 그러나 현실적으로 조밀한 계측망에 의해 측정된 정확한 강우 자료를 얻기는 쉽지 않다. 일반적으로 강우관측소가 적정 밀도를 가지고 유역을 대표 하도록 설치되어 있으나 부족한 실정이고, 설치되어 있더라도 강우의 시 공간적 변동성을 반영하기가 쉽지 않다. 또한 여러 가지 이유로 결측이 되는 경우도 있다. 강우는 측정된 점 관측 자료를 이용해 유역의 평균 강우분포를 추정하게 된다. 따라서 결측 강우자료는 시간의 연속성 측면에서 그 보정이 반드시 필요하며 보정 후 강우자료의 공간적 분포를 산정할 수 있을 것이다. 본 연구에서는 결측 강우량의 보정을 위하여 퍼지-유전자 알고리즘을 이용하였는데 이 방법을 기존의 방법 즉, 산술평균법, 역거리법, 년정상강우량법, 거리-고도비율법과 비교하였다. 보정결과 기존의 방법은 실측의 70~80%의 정확도를 보였으나 퍼지-유전자 알고리즘은 90%정도의 정확도를 보였다. 특히, 민감도 분석 결과를 바탕으로 수평거리와 고도차에 대한 적정 차수를 제안하였다.
강우가식성 지표(또는 강우침식인자)는 빗방울이 지상으로 떨어질 때 빗방울의 크기와 낙하속도 즉 운동에너지에 의하여 표토의 입자가 잠재적으로 침식될 수 있는 정도를 의미한다. 최신 호우사상을 분석하여 지점별 연평균 강우가식성 지표를 지속적으로 갱신하는 연구는 범용토양유실공식을 이용하여 장기간에 걸친 연평균 토양침식량을 산정하려고 하는 연구자들에게 지속적인 관심의 대상이 되어 왔다. 본 연구는 기상청 산하 관측소 54개 지점을 대상으로 지점별 연평균 강우가식성 지표를 업데이트하기 위한 것으로, 2017년까지의 데이터를 포함하여 업데이트하는 것을 목표로 하였다. 강우 가식성 지표 계산을 위한 1분 단위 강우자료는 기상자료개방포털의 공개된 자료로부터 획득할 수 있으나, 지점별로 결측치를 일부 포함하고 있거나 불연속된 자료가 포함되어 있어 54개 지점 모두를 업데이트하는 것은 제한이 되었다. 결과적으로 54개 지점 중에 29개 지점에 대한 값을 업데이트할 수 있었다. 연구결과 기상청 29개 지점의 1961~2017년 기간(최소 45년 ~ 최대 57년) 동안의 연평균 강우가식성 지표는 4,624MJmm/ha/hr로 나타났다. 이 값은 2015년 기간까지의 평균값과 거의 차이가 없는 것으로 나타났다. 또한, 지역적 분포로서 29개 지점 중에 14개 지점에서 연평균 강우가식성 지표가 소폭 감소한 것으로 나타났으며, 15개 지점은 증가한 것으로 나타났으며 최대 증가 및 감소폭은 2.5% 이내인 것으로 나타났다.
본 연구에서는 Terra MODIS 위성자료와 Tensorflow를 활용해 1 km 공간 해상도의 토양수분을 산정하는 알고리즘을 개발하고, 국내 관측 자료를 활용해 검증하고자 한다. 토양수분 모의를 위한 입력 자료는 Terra MODIS NDVI(Normalized Difference Vegetation Index)와 LST(Land Surface Temperature), GPM(Global Precipitation Measurement) 강우 자료를 구축하고, 농촌진흥청에서 제공하는 1:25,000 정밀토양도를 기반으로 모의하였다. 여기서, LST와 GPM의 자료는 기상청의 종관기상관측지점의 LST, 강우 자료와 조건부합성(Conditional Merging, CM) 기법을 적용해 결측치를 보간하였고, 모든 위성 자료의 공간해상도를 1 km로 resampling하여 활용하였다. 토양수분 산정 기술은 인공 신경망(Artificial Neural Network) 모형의 딥 러닝(Deep Learning)을 적용, 기계 학습기반의 패턴학습을 사용하였다. 패턴학습에는 Python 라이브러리인 TensorFlow를 사용하였고 학습 자료로는 농촌진흥청 농업기상정보서비스에서 101개 지점의 토양수분 자료(2014 ~ 2016년)를 활용하고, 모의 결과는 2017 ~ 2018년까지의 자료로 검증하고자 한다.
금강유역의 관측소로부터 수집된 강우자료와 지하수위자료를 분석하고 두 자료를 비교 분석하였다. 그리고 강우사상이 지하수위에 미치는 영향분석을 추계학적 기법인 이동평균법을 사용하여 지하수위와 강우이동평균값의 상관관계를 분석하였다. 지하수위는 강우의 계절적 분포를 대체로 따르며 대체로 12월 초부터 4월 말까지 낮은 지하수위를 형성한다. 7월과 8월의 풍수기에는 상대적으로 높은 지하수위를 형성한다. 선행강우를 고려하기 위한 강우이동평균값과 지하수위의 상관관계는 자료의 길이가 최소 2년 이상인 지하수위 관측소를 먼저 선정하였다. 강우와 지하수위 관측소 pair를 선정함에 있어 강우의 비균질한 분포를 고려해서 지하수위 관측소보다 상류에 인접한 강우관측소를 선정하여 두 자료를 분석하였다. 금강유역의 여러 관측소 자료를 분석한 결과 이동평균기간이 10일에서 150일 범위의 값을 가질 때 최대상관계수를 가졌다. 상관계수값은 자료의 질이나 결측기간 또는 융설이나 다른 요인에 의해 넓은 범위의 값을 가지는데 금강유역의 경우 최대 0.8886의 값을 가진다.
강우 데이터는 습지관리, 수문모의, 수자원 관리와 같은 다양한 분야에서 활용되는 필수 입력자료 중 하나이다. 강우 데이터를 활용하여 효율적인 수자원관리를 위해서는 기본적으로 데이터의 결측률을 최소화 시킴으로써 최대한 많은 데이터를 확보하는 것이 필수적이다. 또한 미계측 지역에 대한 강우 데이터를 확보한다면 보다 효율적인 수문모의가 가능하다. 그러나 결측 강우 데이터는 주로 통계학적 기법에 의해 추정되어 왔다. 본 연구의 목적은 데이터 간의 상관관계를 기반으로 새로운 데이터를 예측할 수 있는 머신러닝 알고리즘을 활용하여 결측 강우 데이터를 복원할 수 있는 새로운 방법을 제안하고자 한다. 또한, 기존의 통계적 방법들과 비교하여 머신러닝 기법의 결측 강우 데이터 복원을 위한 활용가치를 평가하고자 한다. 평가를 위해 대표적인 머신러닝 알고리즘인 Artificial Neural Network (ANN)과 Random Forest (RF)을 적용하였다. 강우의 발생 유무를 분류하는 성능은 RF 알고리즘이 ANN 알고리즘보다 강우 발생유무의 분류 정확도가 높은 것으로 나타났다. 분류 모형의 평가 지표인 F1-score나 Accuracy값이 RF는 0.80, 0.77인 반면에, ANN은 0.76, 0.71로 계산되었다. 또한 강우량을 추정하는 성능 역시 RF가 ANN 알고리즘보다 보다 높은 정확도를 보였다. RF과 ANN 알고리즘의 RMSE은 2.8mm/day과 2.9mm/day이고, R2값은 0.73, 0.68으로 계산되었다.
적용대상 유역은 낙동강수계로 하였으며 소유역 분할은 총 25개로 하였으며, 강우관측소의 선정과 Thiessen 계수의 산정은 최근에 한국수자원공사에서 새로 추가한 강우관측소를 위주로 대상 연도별로 달리하여 강우관측소를 선정하였다. 강우자료의 결측치는 RDS 방법을 사용하여 보완하였다. 대상연도별 소유역별로 일간 유역 평균 강우량을 산정하였다. 적용 모형의 선정은 한국수자원공사 실무부서에서의 적용사례가 빈번한 SSARR 모형을 최종적으로 선정하였다. SSARR 모형의 입력자료를 물리적 매개변수, 수문기상 매개변수 및 내부처리 매개변수로 구분하여 구축하였고 매개변수의 민감도분석과 함께 모형의 보정을 실시하였다. 민감도 분석 결과, 유역유출과 관련된 매개변수에서는 고수시와 저수시의 경우 지표수와 복류수의 분리하는 매개변수에서 민감도가 크게 나타났다. 저수시의 경우 지하수 중 회귀지하수가 차지하는 비율이 크게 나타났고, 지표수, 복류수, 지하수 및 회귀지하수의 저류시간에서 비교적 큰 민감도를 나타내었다. 1983년부터 2003년까지 21개년에 걸쳐 25개 소유역별로 일평균 자연유출량을 산정하여 이를 이용한 반순, 순, 월 및 연평균 자연유출량을 산정하였다.
유역의 유입 및 유출은 강수에 의해 발생하며 여러 가지 기후 조건과 토지 상태의 영향을 받는다. SWAT(Soil and Water Assessment Tool) 모형은 이러한 여러 가지 복잡한 기후 조건과 토지 상태를 반영하며, 장기간 입력 자료에 따른 유출량을 산출할 수 있다. 본 연구에서는 시험유역을 안동댐 유역으로 선정하였으며, SWAT 모형을 이용하여 10년(2000년 ~ 2010년) 동안의 유출량을 산정하였고 이를 안동댐의 실측 유입량과 비교 분석하였다. ArcSWAT을 이용하여 분석하였고 입력 자료는 SWAT의 분석단위인 HRU(Hydrologic Response Unit)를 산정하기 위한 정밀 토양도 및 토지피복도와 기상입력 자료인 강우 및 최고기온, 최저기온, 습도, 풍속, 일사량 등을 사용하였다. 강우관측소는 안동댐 유역의 고선, 남회룡, 도천, 미질, 석동, 석포, 석현, 의촌, 재산, 황지를 선정하였고, 일사량관측소는 안동, 대관령, 포항을 선정하였으며, 기온, 습도, 풍속관측소는 안동, 봉화, 태백, 영주를 선정하였다. 또한 기상입력자료 중 결측값은 역거리 자승법을 이용하여 보완하였다. SWAT 모형은 유출량 계산 시 여러 가지 다양한 매개변수가 사용되며, 이러한 매개변수들의 검 보정을 통하여 실제 유역의 특성과 하천 흐름특성을 반영할 수 있다. 본 연구의 시험유역인 안동댐유역은 산림과 초지가 많은 지역이기 때문에 식물에 의해 차단되는 강우에 관한 매개변수와 지하로 침투되는 강우량에 관한 매개변수 등을 보정하여 실제 유역특성을 반영하였다. 본 연구에서는 이러한 과정을 통해 안동댐 유역의 10년 동안의 일 유출량을 산정한 결과, 홍수기의 첨두유량 및 첨두시간에는 실측자료와 약간의 차이가 있었지만 전체적으로 실측자료와 매우 유사한 유출량을 산정하였다.
강우자료는 수문시스템 해석에 있어 가장 기본이 되는 입력자료이며, 강우측정시에는 다양한 원인에 의해 결측이 발생하게 된다 따라서, 이러한 자료를 보정하기 위한 다양한 방법들이 제시되어 있으나 적용성이나 오차정도에 대한 평가 없이 사용되고 있는 실정이다. 본 연구에서는 기존에 사용중인 산술평균법, 정상연강우량법, 수정정상연강우량법, 역거릭법, 선형계획법, 크리깅방법 등의 강우량 보정방법을 비교 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.