• 제목/요약/키워드: 결측비율

검색결과 28건 처리시간 0.022초

한반도 연안 조위자료의 결측 양상 (Missing Pattern of the Tidal Elevation Data in Korean Coasts)

  • 조홍연;고동휘;정신택
    • 한국해안·해양공학회논문집
    • /
    • 제23권6호
    • /
    • pp.496-501
    • /
    • 2011
  • 우리나라 연안 조위자료의 결측양상을 분석 제시하였다. 결측구간은 결측정보지시행렬을 이용하여 전체적인 결측양상을 파악할 수 있도록 도시하였으며, 시간적 공간적인 결측비율도 분석하여 제시하였다. 전반적으로 조위의 결측비율은 낮은 수준이나, 결측이 특정 조위관측소에 집중되는 경향을 보이고 있다. 또한 연속적인 결측자료 발생간격에 대한 자기상관함수를 분석한 결과, 조위자료의 결측은 무작위적으로 발생하고 있는 것으로는 파악되었다.

Support Vector Regression을 이용한 희소 데이터의 전처리 (A Sparse Data Preprocessing Using Support Vector Regression)

  • 전성해;박정은;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.499-501
    • /
    • 2004
  • 웹 로그, 바이오정보학 둥 여러 분야에서 다양한 형태의 결측치가 발생하여 학습 데이터를 희소하게 만든다. 결측치는 주로 전처리 과정에서 조건부 평균이나 나무 모형과 같은 기본적인 Imputation 방법을 이용하여 추정된 값에 의해 대체되기도 하고 일부는 제거되기도 한다. 특히, 결측치 비율이 매우 크게 되면 기존의 결측치 대체 방법의 정확도는 떨어진다. 또한 데이터의 결측치 비율이 증가할수록 사용 가능한 Imputation 방법들의 수는 극히 제한된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 Vapnik의 Support Vector Regression을 데이터 전처리 과정에 알맞게 변형한 Support Vector Regression을 제안하여 이러한 문제점들을 해결하였다. 제안 방법을 통하여 결측치의 비율이 상당히 큰 희소 데이터의 전처리도 가능하게 되었다. UCI machine learning repository로부터 얻어진 데이터를 이용하여 제안 방법의 성능을 확인하였다.

  • PDF

범주형 자료의 결측치 추정방법 성능 비교 (Comparing Accuracy of Imputation Methods for Categorical Incomplete Data)

  • 신형원;손소영
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.33-43
    • /
    • 2002
  • 범주형 데이터의 결측치 추정을 위하여 최빈 범주법, 로지스틱 회귀분석, 연관규칙과 같은 다양한 방법이 연구되어 왔다. 본 연구에서는 이러한 방법의 추정 값을 결합하는 신경망 융합과 투표융합 방법을 제안하고 이의 성능을 시뮬레이션을 이용하여 비교하였다. 실험에 사용된 데이터의 특성을 나타내는 인자로는 (1) 입출력 변수간의 연결함수, (2) 데이터의 크기, (3) 노이즈의 크기 (4) 결측치의 비율, (5) 결측발생 함수를 사용하였다. 분석결과는 다음과 같다. 데이터의 크기가 작고 결측 발생 비율이 높으면 최빈 범주법, 연관규칙, 신경망 융합의 성능이 높게 나타났으며 데이터의 크기가 작고 결측발생 확률이 결측이 안된 나머지 변수에 높은 의존관계가 있으면 로지스틱 회귀분석, 신경망 융합의 성능이 높게 나타났다. 데이터의 크기가 크고, 결측치의 비율이 낮으면서, 노이즈가 크고 결측발생 확률이 결측이 안된 나머지 변수에 높은 의존관계가 있으면 신경망 융합의 성능이 높게 나타났다.

연속적 결측이 존재하는 기온 자료에 대한 결측복원 기법의 비교 (A comparison of imputation methods for the consecutive missing temperature data)

  • 김희경;강인경;이재원;이영섭
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.549-557
    • /
    • 2016
  • 장기간의 기후 자료가 누적되다 보면 자료의 수집과정에서 시스템적 오류나 측정 장비의 고장 등으로 인하여 연속적 결측이 종종 발생하게 된다. 연속적인 결측 형태를 갖는 경우 시계열 결측 자료를 대체하는 것에 어려움이 따른다. 이러한 경우 참조시계열을 이용하여 결측값을 대체할 수 있다. 참조시계열은 결측이 발생한 시계열과 관련성이 높은 주변지점의 시계열로 구성할 수 있다. 본 연구에서는 결측값을 대체시킬 수 있는 3가지 결측복원 기법-수정된 정규화비율 방법, 회귀 방법, IDW 방법-을 비교하는 시뮬레이션을 수행하였다. 우리나라 14개 지점의 기후관측소의 일평균기온값을 대상으로 비교한 결과 남쪽 해안가에 위치한 기후관측소의 자료에 대해서는 IDW 방법이 가장 정확한 것으로 나타났으며, 그 외 지역의 기후관측소 자료에 대해서는 회귀 방법이 가장 정확한 것으로 나타났다.

주기성을 갖는 탁도자료의 결측치 보완 기법 (Filling Method for Missing Turbidity Data having Periodicity)

  • 백경오;조홍연;이삼희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1546-1550
    • /
    • 2006
  • 한강 하구부의 3개 지점에서 수중 계류방식으로 약 5개월에 걸쳐 탁도를 관측하였다. 이 과정에서 관측기기의 한계로 인해 탁도 자료의 결측치가 발생하였고, 이를 효율적으로 보완하기 위해 새로운 결측치 보완기법을 개발하였다. 개발된 기법, 일명 면적비법은 시계열 자료가 단일주기와 상이한 진폭을 갖는다는 가정하에, 각 사이클의 면적비율을 통해 결측치를 보완하는 방법이다. 면적비법과 기존의 최소제곱법을 검증하기 위해 결측치가 없는 정상적인 자료에 적용해 보면, 두 방법 모두 첨두치를 약간 과소 산정하는 경향이 있었다. 하지만 면적비법의 경우, 원자료의 총 면적과 보완자료의 총 면적간의 차이가 거의 없었다. 이 방법들을 한강 하구부에서 관측된 탁도자료에 적용해 본 결과, 면적비법은 합리적으로 결측치를 보완하는 반면, 최소제곱법은 보완자료의 총면적이 원자료에 비해 작아지는 오류가 발생하였다. 따라서 최소제곱법에 비해 면적비법이 결측치 보완에 더 우수한 결과를 제공함을 알 수 있었다. 본 연구에서 개발한 면적비법은 주기성이 뚜렷한 시계열자료의 결측치 보완에 유용하게 쓰일 수 있으리라 기대된다.

  • PDF

반복비율적합에 의한 다차원 분할표의 결측칸값 추정 (Estimating Missing Cells in Contingency Table with IPE)

  • 최현집;신상준
    • 응용통계연구
    • /
    • 제13권1호
    • /
    • pp.197-206
    • /
    • 2000
  • 반복비율적합 방법을 확장하여 준독립성모형하에서 불완전한 다차원 분할표에 포함된 결측칸의 최우추정값을 얻기 위한 추정방법을 제안하였다. 제안된 방법은 주변합이 영이 아닌 모든 불완전한 분할표에 적용할 수 있으며 주어진 준로그선형모형의 구조를 해치지 않는다. 또한 결측칸의 위치와 수에 영향을 받지 않고 항상 수렴한다는 것을 확인하였다.

  • PDF

차량 검지자료 결측 보정처리에 관한 연구 (이력자료 활용방안을 중심으로) (A Study on the Imputation for Missing Data in Dual-loop Vehicle Detector System)

  • 김정연;이영인;백승걸;남궁성
    • 대한교통학회지
    • /
    • 제24권7호
    • /
    • pp.27-40
    • /
    • 2006
  • 교통정보는 운영 중인 VDS(Vehicle Detector System)를 통해 수집된 교통량, 속도, 점유율 자료를 바탕으로 가공되어 제공된다. 수집된 자료의 응용범위와 이용자 및 활용분야는 점점 증가하는 추세에 있다. 수집된 차량 검지자료 내의 결측자료는 대상의 속성을 포함하지 않은 채 전송되는 일련의 빈 데이터를 말한다. 결측자료는 속성 값을 갖고 있지 않은 관계로 데이터가공 처리대상에서 제외된다. 결국 수집 데이터 내의 결측자료의 비율이 증가할수록 해당 지점의 교통상황을 반영하는데 있어 신뢰성이 결여되는 문제점을 갖게 된다. 본 연구에서는 결측자료에 대해 인접지점 참조방식과 이력자료를 활용한 방법론을 적용한 보정처리 결과를 제시하였다 현재 운영 중인 서해안/경부고속도로의 VDS 자료에 임의의 결측자료 비율을 처리 후 보정처리 방법론을 적용하였다. 보정단위는 차로단위-30초 주기로 수행하였으며 오전/오후/일단위로 구분하여 원데이터 대비 보정된 값의 오차를 분석하였다. 분석결과 인접지점 참조방식에 비해 이력자료를 활용한 보정처리 방법이 원데이터에 가까운 값을 도출하는 것을 알 수 있었다.

한강 하구부에서 결측된 탁도 자료의 보완 (Filling Analysis for Missing Turbidity Data in Han River Estuary)

  • 백경오;조홍연;이삼희
    • 한국수자원학회논문집
    • /
    • 제39권4호
    • /
    • pp.289-298
    • /
    • 2006
  • 한강 하구부의 3개 지점에서 수중 계류방식으로 약 5개월에 걸쳐 탁도를 관측하였다. 이 과정에서 관측기기의 한계로 인해 탁도 자료의 결측치가 발생하였고, 이를 효율적으로 보완하기 위해 본 연구에서는 새로운 결측치 보완기법을 개발하였다. 개발된 기법은 시계열 자료가 단일주기와 상이한 진폭을 갖는다는 가정하에, 각 사이클의 면적비율을 통해 결측치를 보완하는 방법이다. 이 기법을 결측되지 않은 정상적인 자료로 검증해 보면, 첨두치가 약간 과소 산정되는 경향이 있으나 총 면적은 보완 전, 후에 거의 차이가 없었다. 따라서 새로운 기법을 바탕으로 한강 하구부에서 관측된 탁도자료의 결측치를 합리적으로 보완할 수 있었다.

Support Vector Regression을 이용한 희소 데이터의 전처리 (A Sparse Data Preprocessing Using Support Vector Regression)

  • 전성해;박정은;오경환
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.789-792
    • /
    • 2004
  • 웹 마이닝, 바이오정보학, 통계적 자료 분석 등 여러 분야에서 매우 다양한 형태의 결측치가 발생하여 학습 데이터를 희소하게 만든다. 결측치는 주로 전처리 과정에서 가장 기본적인 평균과 최빈수뿐만 아니라 조건부 평균, 나무 모형, 그리고 마코프체인 몬테칼로 기법과 같은 결측치 대체 기법들을 적용하여 추정된 값에 의해 대체된다. 그런데 주어진 데이터의 결측치 비율이 크게 되면 기존의 결측치 대체 방법들의 예측의 정확도는 낮아지는 특성을 보인다. 또한 데이터의 결측치 비율이 증가할수록 사용 가능한 결측치 대체 방법들의 수는 제한된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 통계적 학습 이론 중에서 Vapnik의 Support Vector Regression을 데이터 전처리 과정에 알맞게 변형하여 적용하였다. 제안 방법을 이용하여 결측치 비율이 큰 희소 데이터의 전처리도 가능할 수 있도록 하였다 UCI machine learning repository로부터 얻어진 데이터를 이용하여 제안 방법의 성능을 확인하였다.

통행사슬 구조를 이용한 교통카드 이용자의 대중교통 통행종점 추정 (Inferring the Transit Trip Destination Zone of Smart Card User Using Trip Chain Structure)

  • 신강원
    • 대한교통학회지
    • /
    • 제34권5호
    • /
    • pp.437-448
    • /
    • 2016
  • 본 연구는 선행연구에서 제시하고 있는 통행기점 정보만을 제공하고 있는 불완전한 대중교통카드 자료로부터 대중교통 통행의 종점을 통행사슬 구조를 이용하여 추정할 수 있는 모형의 국내 자료 적용 가능성을 살펴보고 모형 적용 결과를 제시하였다. 이를 위해 본 연구는 부산에서 2014년 10월 주중에 수집된 선불 교통카드 승 하차 태그 원시자료 1,846,252건을 대상으로 하루 동안 한 대중교통 이용자가 발생시킨 일련의 통행들을 시 공간적으로 연계시켜 통행사슬을 형성하고, 대중교통 이용자의 결측 종점을 연속된 다음 통행의 승차지점 또는 최초 승차지점이 속한 교통존으로 추정하였다. 모형 검증을 위해 대중교통 통행종점이 관측된 자료에 모형을 적용한 결과 실제 통행종점과 추정 통행종점의 일치도는 82.4%로 나타났으며 이 때 통행종점으로 추정된 정류장과 실제 하차 정류장간 거리의 오차는 최소가 되는 것으로 나타나 제안모형의 유용성은 높은 것으로 분석되었다. 통행사슬 구조를 이용한 통행종점 추정 모형을 종점결측 통행에 적용했을 때 종점결측 통행의 비율은 적용 전 71.40%(718,915통행)에서 21.74%(218,907통행)로 감소하였으며 종점추정이 불가한 218,907통행의 대부분은 모형 적용이 불가한 일일 통행횟수 '1회'인 통행(169,359통행, 77.37%)인 것으로 나타났고, 일일 통행횟수가 '2회 이상'인 통행의 종점결측 비율은 69.56%에서 모형 적용 후 6.27%로 크게 감소하였다. 한편 통행종점 추정 모형 적용에 따른 존간 통행 및 존내 통행분포의 변화를 비교하기 위해 순위상관계수 및 카이제곱 적합도 검정을 수행하였으며, 분석 결과 통행종점 추정 모형 적용에 따라 각 중존별 통행량의 순위는 변화하지 않으나 통행량 분포는 유의한 변화를 보였다. 따라서 통행사슬 구조를 이용한 교통카드 이용자의 통행종점 추정 모형 적용은 통행종점이 결측된 불완전 대중교통카드 자료가 수집되고 있는 도시의 대중교통 통행패턴을 보다 현실적으로 반영할 수 있게 도움을 줄 것으로 판단된다.