• Title/Summary/Keyword: 결정 소성학

Search Result 177, Processing Time 0.027 seconds

Fractographic Studies in Ballistically Damaged Polycrystalline Alumina (탄도충격으로 파괴된 다결정 Alumina의 파면조직)

  • 김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.3
    • /
    • pp.127-134
    • /
    • 1978
  • 탄도충격에 의하여 파괴된 단결정 alumina의 파면조직을 광학 및 투과 전자현미경으로 연구 분석하였다. 파면의 주된 파괴 양상은 결정 입개면의 분리 또는 결정입내 파괴로 구성되어 있고 이러한 파괴과정은 복잡한 cleavage 양상과 결정입자 내에서의 소성변형을 수반하고 있다. 미세조직 관찰 결과에 의하면 alumina ceramics의 충격 파괴과정에서 에너지의 흡수가 국부적인 소성변형으로 나타나고 있음을 알 수 있었다.

  • PDF

The study of recrystallization of willemite crystal in ceramic glaze (도자기용 아연 결정유의 재결정화 연구)

  • Lee, Hyun-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.136-142
    • /
    • 2020
  • Crystallization of zinc crystalline glaze requires demanding conditions such as the formation of a nucleating agent and the amount of nucleating agent, and growth of crystalline. Zinc crystalline glaze is hard to utilize in the industry because of its narrow range of the firing temperature, and the crystallization's dependency on the quality of zinc. Stimulation of zinc crystallization and formation of frit enable zinc crystalline glaze to be reconstituted in a various range of firing schedules, leading to the development of a competitive industrial glaze.

Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity (결정 소성학을 이용한 반구 박판 성형공정 전산모사)

  • Shim, J.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.282-284
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By observing the texture evolution of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between crystal plasticity and experiment shows the verification of the crystal-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

  • PDF

Microstructural Development During Microwave Sintering of CaO-$ZrO_2$-$SiO_2$Glass (마이크로파 소결에 의한 CaO-$ZrO_2$-$SiO_2$계 결정화 유리의 미세구조)

  • 소지영;김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.12
    • /
    • pp.1178-1186
    • /
    • 2000
  • 타일의 내마모성과 내산성을 향상시키기 위해 결정화유리가 최근에 새로운 유약 재료로서 소개되고 있다. 신 유약의 연구에 사용된 조성은 $Ca_2$ZrSi$_4$O$_{12}$ 상에 근접하는 CaO-ZrO$_2$-SiO$_2$계의 유리조성의 분말로, 마이크로파 가열 (2.45 GHz)에 의해서 900-120$0^{\circ}C$의 0-20분간 소성되어 평가되었다. 그 결과, 100$0^{\circ}C$ 이상에서 소성한 시편은 내부 결정화를 나타내었으며, 결정상은 미세(5$mu extrm{m}$)한 크기를 갖는 $Ca_2$ZrSi$_4$O$_{12}$가 주 결정상이며, $Ca_2$ZrSi$_4$O$_{12}$, CaSiO$_3$, SiO$_2$의 세 상이 나타났다. 소결체의 미세구조는 사용한 유리분말의 입도의 영향을 받았다. 미세분말 (<38$\mu\textrm{m}$)을 이용한 소결체의 조직이 조세분말 (45-150$\mu\textrm{m}$)의 경우보다 수축율면에서 높았으며 낮은 기공도를 갖는 미세구조를 가졌다. 마이크로파에 의한 유리분말의 소성은 1000-120$0^{\circ}C$ 구간에서 10분 이내 결정화가 완료되는 급속 가열 공정이었으며 CaO-ZrO$_2$-SiO$_2$계 결정화 유리 제조에 균일한 체적가열을 할 수 있었다.

  • PDF

Finite Element Analysis for Steady State Forming Process of Polycrystalline Metal Including Texture Development (집합조직의 발전을 반영하는 다결정재의 정상상태성형공정해석)

  • 김응주;이용신
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.297-304
    • /
    • 1996
  • A process model is formulated considering the effect of crystallographic texture developed in forming process. The deformation induced plastic anisotropy can be predicted by capturing the evolution of texture during large deformation in the polycrystalline aggregate. The anisotropic stiffness matrix for the aggregate is derived and implemented in Eulerian finite element code using a Consistent Penalty method. As an application the evolution of texture in rolling drawing and extrusion processes are simulated. The numerical results show good agreements with report-ed experimental textures.

  • PDF

A study on crystalline control of zinc crystal glaze for ceramics (도자기용 아연결정 유약의 결정 제어를 위한 연구)

  • Hyun-Soo Lee;Chi Youn Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.234-243
    • /
    • 2023
  • Zinc crystals of ZnO and SiO2 in glaze raw materials, developed according to composition and firing requirements, are preferred because of their high decorative properties. However, most zinc crystal glazes have a high firing temperature and a narrow firing temperature range, making it difficult to use them as commercial glazes in ceramics. Therefore, in this study, it was expected that the firing temperature of a typical zinc crystal glaze could be lowered to below 1270℃ by using the eutectic effect through mixing frit, the main raw material used in manufacturing zinc crystal glaze. As a result, not only was the formation temperature of zinc crystals lower in the mixed frit glaze, but also the firing temperature range was widened to 1230~1270℃, making it possible to develop a glaze that produces crystals stably. The firing temperature was lowered to 1230~1250℃ and the holding temperature during cooling was lowered to about 950℃, resulting in the development of an economically effective glaze. When using a combination of frit, it has been shown that the holding temperature during cooling affects the recrystallization of zinc crystals depending on the composition of the glaze, and the crystal structure can be adjusted at this time. Additionally, the amount and shape of crystals can be controlled by using a nucleating agent.

Calcination Characteristics of High-purity Limestone from the Pungchon Limestone in the Quicklime Manufacture (생석회 제조 공정에서의 풍촌층 고품위 석회석의 소성 특성)

  • Noh, Jin-Hwan;Lee, Hyun-Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.209-224
    • /
    • 2008
  • Various types of high-purity limestone, which occurred in the Pungchon Formation, are examined to understand applied-mineralogical factors controlling their calcination characters with respect to the ore characters. To do this work, systematic characterization and determination were carried out for the limestone ores and their calcination products in a fixed heating condition, and the results were correlated and discussed. During the calcination experiment, a phase transition from calcite to quicklime begins to occur selectively in the physical weak zones such as grain boundary, cleavage and twin planes. All the fabrics of original limestones are preserved in the resultant quicklime. In addition, crystallinity of the quicklime was advanced, as the aging time of calcination was increased. Major controlling factors on the calcination effects of the high-purity limestone are elucidated to be the degree of development of cleavage and twin, together with crystallinity and textures in the limestone ore. Especially, lower crystallinity and dense interlocking fabrics obviously play advantageous role in all the calcination characters. But the development of cleavage and twin affects negatively on the calcination characters on account of favoring decrepitaion of quicklime in the lime manufacturing. Thus, the high-purity limestones characteristic of marble fabrics and relatively lower crystallinity are comparatively advantageous for the uses of lime manufacture.

A thermoelastic simulation on the (100) Si-wafer ((100) 실리콘 웨이퍼에 대한 열탄성모사)

  • Doo Jin Choi;Hyun Jung Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.71-75
    • /
    • 1994
  • In this study, a thermoelastic stress index of (100) oriented single crystalline silicon wafer and a relationship between thermal stress and critical plastic deformation temperatures were simulated. The simulated results for the thermoelastic stress index indicated a maximum value on <110> direction and a minimum on <100>. Then, it could be predicted that silicon wafer is plastically deformable over 1000 K, based on the relationship between the thermal stress derived from the thermoelastic stress index and the critical plastic deformation temperature.

  • PDF

Evaluation of Plastic Anisotropy in the Steel Sheets Using EMAT (EMAT를 이용한 판재의 소성이방성 평가)

  • Ahn, B.Y.;Kim, Y.G.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 1997
  • Plastic anisotropy is one of important factors which determine the drawability of a steel sheet. It has been mainly measured by mechanical tensile test. From the ultrasonic velocities propagating along the relative directions to the rolling direction, CODF(crystallite orientation distribution function) can be measured and ODC's(orientation distribution coefficients) has some correlations with the plastic anisotropy. In this study the correlations between the plastic anisotropy and ODC's of the cold rolled steel sheet were measured. From the results of ultrasonic velocity measurements the average normal anisotropy, $\bar{\gamma}$ and the average planar anisotropy, ${\Delta}r$ could be predicted within the accuracy of ${\pm}0.082$ and ${\pm}0.096$, respectively. Acoustic resonance method was applied to measure the ultrasonic velocities and EMAT's were used for generating and detecting the ultrasonic waves.

  • PDF

The study on the burnability of domestic fly ash and Japanese fly ash as a cement raw material (시멘트 원료로서 국내산 석탄재와 일본산 석탄재의 소성성 비교 연구)

  • Yoon-Cheol Lee;Se-Yong Lee;Kyung-So Min;Seok-Je Lee;Tae-Gyun Park;Dong-Woo Yoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.210-215
    • /
    • 2023
  • Raw mix burnability is an especially crucial factor in cement manufacturing technology, and it depends on the physical, chemical and mineralogical properties of each raw material. In this article, we compared the difference of burnability between the domestic and Japanese fly ash as cement raw materials by using Lafarge and Polysius evaluation method. Regardless of the type or amount of fly ash used, it was found to be more combustible when using fly ash. In both case, burnability improves as the amount of fly ash increases, especially the improvement in bunarbility is remarkable up to 3%. In conclusion, as the amount of fly ash increases within the range allowed by cement quality, burnability of raw materials improves, and thus the fuel cost required for the firing of clinker can also be expected to be reduced.