• Title/Summary/Keyword: 결정트리학습

Search Result 169, Processing Time 0.027 seconds

A Development of Defeat Prediction Model Using Machine Learning in Polyurethane Foaming Process for Automotive Seat (머신러닝을 활용한 자동차 시트용 폴리우레탄 발포공정의 불량 예측 모델 개발)

  • Choi, Nak-Hun;Oh, Jong-Seok;Ahn, Jong-Rok;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.36-42
    • /
    • 2021
  • With recent developments in the Fourth Industrial Revolution, the manufacturing industry has changed rapidly. Through key aspects of Fourth Industrial Revolution super-connections and super-intelligence, machine learning will be able to make fault predictions during the foam-making process. Polyol and isocyanate are components in polyurethane foam. There has been a lot of research that could affect the characteristics of the products, depending on the specific mixture ratio and temperature. Based on these characteristics, this study collects data from each factor during the foam-making process and applies them to machine learning in order to predict faults. The algorithms used in machine learning are the decision tree, kNN, and an ensemble algorithm, and these algorithms learn from 5,147 cases. Based on 1,000 pieces of data for validation, the learning results show up to 98.5% accuracy using the ensemble algorithm. Therefore, the results confirm the faults of currently produced parts by collecting real-time data from each factor during the foam-making process. Furthermore, control of each of the factors may improve the fault rate.

Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique (점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신)

  • Kim, Chulpyo;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.29-39
    • /
    • 2017
  • Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases. In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.

Development of Prediction Model to Improve Dropout of Cyber University (사이버대학 중도탈락 개선을 위한 예측모형 개발)

  • Park, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.380-390
    • /
    • 2020
  • Cyber-university has a higher rate of dropout freshmen due to various educational factors, such as social background, economic factors, IT knowledge, and IT utilization ability than students in twenty offline-based university. These students require a different dropout prevention method and improvement method than offline-based universities. This study examined the main factors affecting dropout during the first semester of 2017 and 2018 A Cyber University. This included management and counseling factors by the 'Decision Tree Analysis Model'. The Management and counseling factors were presented as a decision-making method and weekly methods. As a result, a 'Dropout Improvement Model' was implemented and applied to cyber-university freshmen in the first semester of 2019. The dropout-rate in freshmen applying the 'Dropout Improvement Model' decreased by 4.2%, and the learning-persistence rate increased by 11.4%. This study applied a questionnaire survey, and the cyber-university students LMS (Learning Management System) learning results were analyzed objectively. On the other hand, the students' learning results were analyzed quantitatively, but qualitative analysis was not reflected. Nevertheless, further study is necessary. The 'Dropout Improvement Model' of this study will be applied to help improve the dropout rate and learning persistence rate of cyber-university.

A Methodology of Decision Making Condition-based Data Modeling for Constructing AI Staff (AI 참모 구축을 위한 의사결심조건의 데이터 모델링 방안)

  • Han, Changhee;Shin, Kyuyong;Choi, Sunghun;Moon, Sangwoo;Lee, Chihoon;Lee, Jong-kwan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.237-246
    • /
    • 2020
  • this paper, a data modeling method based on decision-making conditions is proposed for making combat and battlefield management systems to be intelligent, which are also a decision-making support system. A picture of a robot seeing and perceiving like humans and arriving a point it wanted can be understood and be felt in body. However, we can't find an example of implementing a decision-making which is the most important element in human cognitive action. Although the agent arrives at a designated office instead of human, it doesn't support a decision of whether raising the market price is appropriate or doing a counter-attack is smart. After we reviewed a current situation and problem in control & command of military, in order to collect a big data for making a machine staff's advice to be possible, we propose a data modeling prototype based on decision-making conditions as a method to change a current control & command system. In addition, a decision-making tree method is applied as an example of the decision making that the reformed control & command system equipped with the proposed data modeling will do. This paper can contribute in giving us an insight of how a future AI decision-making staff approaches to us.

Implementation of an Efficient Microbial Medical Image Retrieval System Applying Knowledge Databases (지식 데이타베이스를 적용한 효율적인 세균 의료영상 검색 시스템의 구현)

  • Shin Yong Won;Koo Bong Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.93-100
    • /
    • 2005
  • This study is to desist and implement an efficient microbial medical image retrieval system based on knowledge and content of them which can make use of more accurate decision on colony as doll as efficient education for new techicians. For this. re first address overall inference to set up flexible search path using rule-base in order U redure time required original microbial identification by searching the fastest path of microbial identification phase based on heuristics knowledge. Next, we propose a color ffature gfraction mtU, which is able to extract color feature vectors of visual contents from a inn microbial image based on especially bacteria image using HSV color model. In addition, for better retrieval performance based on large microbial databases, we present an integrated indexing technique that combines with B+-tree for indexing simple attributes, inverted file structure for text medical keywords list, and scan-based filtering method for high dimensional color feature vectors. Finally. the implemented system shows the possibility to manage and retrieve the complex microbial images using knowledge and visual contents itself effectively. We expect to decrease rapidly Loaming time for elementary technicians by tell organizing knowledge of clinical fields through proposed system.

  • PDF

A Study on the Classification of Unstructured Data through Morpheme Analysis

  • Kim, SungJin;Choi, NakJin;Lee, JunDong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.105-112
    • /
    • 2021
  • In the era of big data, interest in data is exploding. In particular, the development of the Internet and social media has led to the creation of new data, enabling the realization of the era of big data and artificial intelligence and opening a new chapter in convergence technology. Also, in the past, there are many demands for analysis of data that could not be handled by programs. In this paper, an analysis model was designed and verified for classification of unstructured data, which is often required in the era of big data. Data crawled DBPia's thesis summary, main words, and sub-keyword, and created a database using KoNLP's data dictionary, and tokenized words through morpheme analysis. In addition, nouns were extracted using KAIST's 9 part-of-speech classification system, TF-IDF values were generated, and an analysis dataset was created by combining training data and Y values. Finally, The adequacy of classification was measured by applying three analysis algorithms(random forest, SVM, decision tree) to the generated analysis dataset. The classification model technique proposed in this paper can be usefully used in various fields such as civil complaint classification analysis and text-related analysis in addition to thesis classification.

Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection (머신러닝 기반 금속외관 결함 검출 비교 분석)

  • Lee, Se-Hun;Kang, Seong-Hwan;Shin, Yo-Seob;Choi, Oh-Kyu;Kim, Sijong;Kang, Jae-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2022
  • Recently, applying artificial intelligence technologies in various fields of production has drawn an upsurge of research interest due to the increase for smart factory and artificial intelligence technologies. A great deal of effort is being made to introduce artificial intelligence algorithms into the defect detection task. Particularly, detection of defects on the surface of metal has a higher level of research interest compared to other materials (wood, plastics, fibers, etc.). In this paper, we compare and analyze the speed and performance of defect classification by combining machine learning techniques (Support Vector Machine, Softmax Regression, Decision Tree) with dimensionality reduction algorithms (Principal Component Analysis, AutoEncoders) and two convolutional neural networks (proposed method, ResNet). To validate and compare the performance and speed of the algorithms, we have adopted two datasets ((i) public dataset, (ii) actual dataset), and on the basis of the results, the most efficient algorithm is determined.

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals (3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발)

  • ChanHyeok Jeong;SangYoun Kim;SungKu Heo;Shahzeb Tariq;MinHyeok Shin;ChangKyoo Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.523-541
    • /
    • 2023
  • As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.