• Title/Summary/Keyword: 결정입자 변화

Search Result 642, Processing Time 0.034 seconds

Mechanical properties of $Al_2O_3/Mo/MnO_2$ composite ($Al_2O_3/Mo/MnO_2$ 복합재료의 기계적 특성)

  • Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.172-179
    • /
    • 2006
  • When $Al_2O_3-MoO_3$ mixture is reduced, $MoO_3$ is only reduced to Mo at $900^{\circ}C$. But a compound between $Al_2O_3$ and Mo is not formed up to $1300^{\circ}C$. In the case of $Al_2O_3-MoO_3-MnO_2$ mixture, an intermediate compound $Mn_2Mo_3O_8$ is firstly formed at $900^{\circ}C$ and changes to $MnAl_2O_4$ at $1100^{\circ}C{\sim}1300^{\circ}C$. $Al_2O_3/Mo/MnO_2$ composite are manufactured by a selective reduction process in which Mo is only reduced in the powder mixture of $Al_2O_3,\;MoO_3\;and\;MnO_2$ oxide. For $Al_2O_3/Mo$ composite, the average grain size was not changed with increasing Mo content because of inhibition of grain growth of $Al_2O_3$ matrix in the presence of Mo particles. Fracture strength increased with increasing Mo content due to phenomenon of grain growth inhibition of $Al_2O_3$ matrix. Hardness decreased because of a lower hardness value of Mo, whereas fracture toughness increased. For $Al_2O_3,\;Mo\;and\;MnO_2$ composite, grain growth was facilitated by MnOB and it showed a lower fracture strength because of grain growth effect with increasing Mo and $MnO_2$ content. Hardness decreased because of the grain growth of matrix and coalesced Mo particles to be located in grain boundary, whereas fracture toughness increased.

No-Tillage Agriculture of Korean-Style on Recycled Ridge II. Changes in Physical Properties : Water-Stable Aggregate, Bulk density, and Three Phase Ratio to Retain Water at Plastic Film Greenhouse Soil in No-Tillage System (두둑을 재활용한 한국형 무경운 농업 II. 시설 무경운 토양의 물리적 특성 : 입단과 용적밀도 및 삼상변화)

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Sun-Kook;Kim, Hee-Kwon;Kim, Hyun-Woo;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.719-733
    • /
    • 2016
  • This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the productivity of crop and physical properties of soil under green house condition. This study is a part of "No-tillage agriculture of Korea-type on recycled ridge". From results for distribution of soil particle size with time process after tillage, soil particles were composed with granular structure in both tillage and no-tillage. No-tillage soil in distribution of above 2 mm soil particle increased at top soil and subsoil compared with tillage soil. Tillage and one year of no-tillage soil were not a significant difference at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate. Two years of no-tillage soil was significantly increased by 8.2%, 4.5%, and 1.7% at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate, respectively, compared with one year of no-tillage. Bulk density of top soil was $1.10MG\;m^3$ at tillage and $1.30MG\;m^3$ at one year of no-tillage. Bulk density of top soil was $1.14MG\;m^3$ at two years and $1.03MG\;m^3$ at three years of no-tillage, respectively. Bulk density of subsoil was a similar tendency. Solid phase ratio in top soil and subsoil was increased at one year of no-tillage compared with tillage soil, while soil phase ratio decreased at two and three years of no-tillage. Pore space ratio in tillage top soil (58.5%) was decreased by 8.5% at compared with no-tillage soil (51.0%). Pore space ratio was 56.9% and 61.2% at two and three years of no-tillage soil, respectively. Subsoil was a similar tendency. Gaseous phase ratio was decreased at one year of no-tillage soil, and increased at two and three years of no-tillage soil compared with tillage soil. Liquid phase ratio in top soil was increased at one year of no-tillage (28.3%), and decreased at two years (23.4%) and at three years (18.3 %) of no-tillage soil compared with tillage soil (24.2%). Subsoil was a similar tendency. Liquid phase ratio in subsoil was increased than top soil.

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Gabsan Formation around the Mt. Gachang Area, Chungbuk, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 충북 가창산 지역의 갑산층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • The Middle Carboniferous Gabsan Formation is distributed in the Cheongrim area of southern Yeongwol and the Mt. Gachang area of Chungbuk Province. This study was carried out to investigate the lithological characters and geochemical composition of the limestones and to find out controlling structures of the limestones of the formation. The limestones of the Gabsan Formation are characterized by the light gray to light brown in color and fine and dense textures. The limestone grains are composed of crinoid fragments, small foraminfers, fusulinids, gastropods, ostracods, etc. Due to the recrystallization, some limestones consist of fine crystalline calcites. The chemical analysis of limestones of the formation was conducted to find out the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 49.78-60.63% and the content of MgO ranges from 0.74 to 4.63% The contents of Al$_2$O$_3$ and Fe$_2$O$_3$ are 0.02-0.55% and 0.02${\sim}$0.84% , respectively. The content of SiO$_2$ varies from 1.55 to 4.80%, but some samples contain more than 6.0%. The limestones of the formation can be grouped into two according to the CaO content: One is a group of which CaO content ranges from 49.78 to 56.26% and the other is a group of which CaO content varies from 59.36 to 60.38%. In the first group, the contents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ range very irregularly according to the CaO content. In the second group, the values of MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are nearly same. Detailed structural analysis of mesoscopic structures and microstructures indicates the five phase of deformation in the study area. The first phase of deformation(D$_1$) is characterized by regional scale isoclinal folds, and bedding parallel S$_1$ axial plane foliation which is locally developed in the mudstone and sandstone. Based on the observations of microstructures, S$_1$ foliations appear to be developed by grain preferred orientation accompanying pressure-solution. During second phase of deformation, outcrop scale E-W trending folds with associated foliations and lineations are developed. Microstructural observations indicate that crenulation foliations were formed by pressure-solution, grain boundary sliding and grain rotation. NNW and SSE trending outcrop scale folds, axial plane foliations, crenulation foliations, crenulation lineations, intersection lineations are developed during the third phase of deformation. On the microscale F$_3$ fold, axial plane foliations which are formed by pressure solution are well developed. Fourth phase of deformation is characterized by map scale NNW trending folds. The pre-existing planar and linear structures are reoriented by F$_4$ folds. Fifth phase of deformation developed joints and faults. The distribution pattern of the limestones is mostly controlled by F$_1$ and F$_4$ folds.

  • PDF

Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping (인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제)

  • Kim Joonkon;Woo H. J.;Choi H. W.;Kim G. D.;Hong W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • Nanometric crystalline silicon (no-Si) embedded in dielectric medium has been paid attention as an efficient light emitting center for more than a decade. In nc-Si, excitonic electron-hole pairs are considered to attribute to radiative recombination. However the surface defects surrounding no-Si is one of non-radiative decay paths competing with the radiative band edge transition, ultimately which makes the emission efficiency of no-Si very poor. In order to passivate those defects - dangling bonds in the $Si:SiO_2$ interface, hydrogen is usually utilized. The luminescence yield from no-Si is dramatically enhanced by defect termination. However due to relatively high mobility of hydrogen in a matrix, hydrogen-terminated no-Si may no longer sustain the enhancement effect on subsequent thermal processes. Therefore instead of easily reversible hydrogen, phosphorus was introduced by ion implantation, expecting to have the same enhancement effect and to be more resistive against succeeding thermal treatments. Samples were Prepared by 400 keV Si implantation with doses of $1\times10^{17}\;Si/cm^2$ and by multi-energy Phosphorus implantation to make relatively uniform phosphorus concentration in the region where implanted Si ions are distributed. Crystalline silicon was precipitated by annealing at $1,100^{\circ}C$ for 2 hours in Ar environment and subsequent annealing were performed for an hour in Ar at a few temperature stages up to $1,000^{\circ}C$ to show improved thermal resistance. Experimental data such as enhancement effect of PL yield, decay time, peak shift for the phosphorus implanted nc-Si are shown, and the possible mechanisms are discussed as well.

A Study of Mo Back Electrode for CIGSe2 Thin Film Solar Cell (CIGSe2 박막태양전지용 Mo 하부전극의 물리·전기적 특성 연구)

  • Choi, Seung-Hoon;Park, Joong-Jin;Yun, Jeong-Oh;Hong, Young-Ho;Kim, In-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • In this Study, Mo back electrode were deposited as the functions of various working pressure, deposition time and plasma per-treatment on sodalime glass (SLG) for application to CIGS thin film solar cell using by DC sputtering method, and were analyzed Mo change to $MoSe_2$ layer through selenization processes. And finally Mo back electrode characteristics were evaluated as application to CIGS device after Al/AZO/ZnO/CdS/CIGS/Mo/SLG fabrication. Mo films fabricated as a function of the working pressure from 1.3 to 4.9mTorr are that physical thickness changed to increase from 1.24 to 1.27 ${\mu}m$ and electrical characteristics of sheet resistance changed to increase from 0.195 to 0.242 ${\Omega}/sq$ as according to the higher working pressure. We could find out that Mo film have more dense in lower working pressure because positive Ar ions have higher energy in lower pressure when ions impact to Mo target, and have dominated (100) columnar structure without working pressure. Also Mo films fabricated as a function of the deposition time are that physical thickness changed to increase from 0.15 to 1.24 ${\mu}m$ and electrical characteristics of sheet resistance changed to decrease from 2.75 to 0.195 ${\Omega}/sq$ as according to the increasing of deposition time. This is reasonable because more thick metal film have better electrical characteristics. We investigated Mo change to $MoSe_2$ layer through selenization processes after Se/Mo/SLG fabrication as a function of the selenization time from 5 to 40 minutes. $MoSe_2$ thickness were changed to increase as according to the increasing of selenization time. We could find out that we have to control $MoSe_2$ thickness to get ohmic contact characteristics as controlling of proper selenization time. And we fabricated and evaluated CIGS thin film solar cell device as Al/AZO/ZnO/CdS/CIGS/Mo/SLG structures depend on Mo thickness 1.2 ${\mu}m$ and 0.6 ${\mu}m$. The efficiency of CIGS device with 0.6 ${\mu}m$ Mo thickness is batter as 9.46% because Na ion of SLG can move to CIGS layer more faster through thin Mo layer. The adhesion characteristics of Mo back electrode on SLG were improved better as plasma pre-treatment on SLG substrate before Mo deposition. And we could expect better efficiency of CIGS thin film solar cell as controlling of Mo thickness and $MoSe_2$ thickness depend on Na effect and selenization time.

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF

Influence of Coating Agent and Particle Size on the Soft Magnetic Properties of Fe Based Nano Crystalline Alloy Powder Core (철기(Fe Based) 나노결정질 합금 분말코어의 코팅제 및 입도가 연자기적 특성에 미치는 영향)

  • Jang, S.J.;Choi, Y.J.;Kim, S.W.;Jeon, B.S.;Lee, T.H.;Song, C.B.;Namkung, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.67-73
    • /
    • 2015
  • This is a basic research for improving soft magnetic property of Fe based nano crystalline alloy powder core. The main study is done around characteristics of permeability, core loss, and DC bias depending on amount of insulation coating agent and particle size. First, $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ amorphous alloy ribbon was fabricated by using the planar flow casting (PFC) device. Then, heat treatment and ball milling were done to obtain alloy powder. The amount of polyether imide (PEI) added to it was varied by 0.5, 1.0, 2.0, 2.5 wt% to have compression molding into $16ton/cm^2$. After going through crystalline heat treatment, the made toroidal nano crystalline powder core ($OD12.7mm^*ID7.62mm^*H4.75mm$) had smaller permeability as amount of insulation coating agent decreases. However, it was found out that core loss and DC bias characteristics have been improved. The reason for this results were expected to be because green density of power core decreases as amorphous alloy powder particles become smaller as amount of alloy powder insulation coating agent increases, it was determined that 1 wt% of insulation coating agent is appropriate. Also, for powder core made based on alloy powder size with amount of insulation coating agent fixed at 1 wt%, effective permeability and core loss were outstanding as particle size became bigger. However, characteristics of DC bias became worse as applied DC field increases. This is expected to be due to insulation effect, residual pores, or molding density of powder core resulting from thickness of coating on surface of alloy powder.

The Effect of Chemical Composition and Sintering Temperature on The Improvement of Physical Properties of Mn-Zn Ferrites (Mn-Zn ferrite의 성분 및 소결 온도에 따른 물리적 특성의 향상 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.269-274
    • /
    • 1995
  • The basic composition of Mn-Zn ferrite was $Mn_{0.631}Zn_{0.316}Fe_{2.053}O_{4}$(specimen A), $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) and $Mn_{0.538}Zn_{0.308}Fe_{2.154}O_{4}$(specimen C) with additional 0.1 mol % $CaCo_{3}$ and 0.04 mol % $V_{2}O_{5}$. For high per¬meability and acceleration of grain growth, $CaCo_{3}$ and $V_{2}O_{5}$. was added. The mixture of the law materials was calcinated at $950^{\circ}C$ for 3 hours and then milled. The compacts of toroidal type were sintered at different temperature($1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for 2 hours in $N_2$ atmosphere. The effects of the various raw material composition and sintered temperature on the physical properties of Mn-Zn ferrite have been investigated. They turned out to be spinel structure by X-ray diffraction and the size of grain from SEM was from $18\;\mu\textrm{m}\;to\;23\;\mu\textrm{m}$. As the sintering temperature was increased from $1250^{\circ}C$ to $1350^{\circ}C$, the initial permeability and magnetic induction has increased and the both of Q factor and coercive force has decreased. The coercive force and curie temperature were almost the same at each specimen Their values were about 0.45 Oe and $200^{\circ}C$. The frequency of specimen will used in the range from 200 kHz to 2 MHz. The basic composition of $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) sintered at $1300^{\circ}C$ shows the best results at magnetic induction (Br & Bm).

  • PDF

Sorting and Abrasion Processes on Gravel Beach of Jeongdo-ri, Wando, Korea (한국 남해 완도 정도리 자갈 해빈의 퇴적작용)

  • 고영이;박용안;최강원
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.27-39
    • /
    • 1993
  • The shingle beach as a typical pocket beach located in Jeongdo-ri, Wando, Cheolanam-do, Korea has been investigated in terms of textural characteristics, mainly gravel shape and roundness. In the Jeongdo-ri gravel beach, changes of beach profile after storm weather and textural parameters of gravels were observed and measured from May 1992 to March 1993. Beach profile is divided into two different Fair-weather zone and Storm-weather zone influenced by dynamic condition of wave energy. The former is affected by wave and tide under fair-weather condition, the latter seems to be formed under storm-weather condition. Each zone comprises a series of beach faces and berms formed by continuous sedimentary processes of swash, overwash and backwash. Storm-weather zone is subdivided into three groups having a pair of beach face and berm respectively. Mean sizes of berm gravel(45.5 mm -123.6 mm) are coarser than gravels of beach face (36.8 mm - 78.3 mm) in fair-weather zone. On the other hand, in storm-weather zone, gravels of berms (33.1 mm -82.5 mm) are finer than those of beachfaces (46.2 mm - 105.2 mm). The proportion of disc shaped gravels of berm (50.0% - 58.5 %) is higher than that of beachface (45.9 % - 51.3 %) in each subzone except C-group of storm-weather zone. And the proportion of the equant shaped gravel increases about up to 10% seaward. Therefore, shore-normal distribution of gravels seems to be affected by shape and size sorting effects. Shore-parallel distribution pattern of gravel shape is more distinctive than size distribution patterns. That is, disc and blade shaped particles decrease up to 20% and 13% respectively, and equants increase up to 34% to the westward. Gravels plotted on Sneed and Folk's triangular diagram are more compacted and elongated with decreasing size. Therefore primary gravels are shaped by characteristics of country rock e.g. cleavage, joint etc., and secondary are affected by sorting and size-controlled process evolution by wave action.

  • PDF

Distribution of Nitrogen Components in Seawater Overlying the Gomso Tidal Flat (곰소만 조간대 해수 내 질소 성분의 시공간적인 분포)

  • 양재삼;김기현;김영태
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.251-261
    • /
    • 2003
  • As a part of an on-going project investigating flux of materials in Gomso Tidal Flat, we have monitored temporal and spatial distribution of nitrogen components(TN, PON, DON, DIN) and have sought the relationships with the freshwater input(tidal range, salinity), the biological activities(chlorophyll-${\alpha}$, TP, DIP, silicate) and the resuspended bottom sediment in seawater(SPM) from 1999 to 2000. TN in seawater was 39.05 $\mu\textrm{m}$ol 1$\^$-1/ (31.03∼42.93 $\mu\textrm{m}$ol 1$\^$-1/) without any statistical difference(p<0.05) between the studied periods. Organic nitrogen (DON and PON) occupied 75%, 95%, 73%, and 75% in April, August, September and November, respectively. DON and PON have been found within the narrow concentration ranges of 11.30∼16.38 $\mu\textrm{m}$ol 1$\^$-1/ and 13.16∼20.04 $\mu\textrm{m}$ol 1$\^$-1/ in spite of severe environmental differences through the studied periods. Dissolved fractions of nitrogen(DON and DIN) occupied 53∼65% of TN. Only DIN varied with an evident temporal variability: low concentrations(1.325∼1.616 $\mu\textrm{m}$ol 1$\^$-1/) in August and high enrichment(8.377∼14.65 $\mu\textrm{m}$ol 1$\^$-1/) in September. High consumption rate of DIN by phytoplankton and a long-lasted drought probably induced such low concentration of DIN in August. Eventually heavy precipitation probably introduced plenty of new nitrogen sources into Gomso Bay in September. The portion of PON, DON and DIN in the total nitrogen was 40%, 38% and 22%, respectively. Their contents were in the order of DON>PON>DIN for the year round except PON>DON>DIN only in September. The highest DON portion in August probably due to the active microbial decomposition of organic material in summer. Only in April, some evident negative correlations have been found between chlorophyll-${\alpha}$ and DIN mostly nitrate(-0.64, p<0.01), phosphate(-0.46, p<0.01) and silicate(-0.55, p<0.01). The Si(OH)$_4$/DIN/DIP ratios in the water column suggests the limitation of DIN for the growth of phytoplankton during the dry summer in Gomso Bay, which was the case of August in this work. Even with some difference between the studied periods, the primary factors on the distribution of nitrogen components in seawater overlying the Gomso Tidal Flat have been the tidal range and the freshwater input, but the additional variations were due to the biological activities.