• Title/Summary/Keyword: 결정론적 최적화 기법

Search Result 59, Processing Time 0.031 seconds

Capacity determination of rainwater detention tanks using particle swarm optimization (입자 군집 최적화 기법을 이용한 빗물 저류지 용량 결정)

  • Jeong, Taekmun;Jin, Youngkyu;Kang, Taeuk;Lee, Sangho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.353-353
    • /
    • 2020
  • 기후변화에 적응하기 위해 많은 나라들이 수자원 관리 전략을 마련하고 있으며, 대체 수자원 활성화 방안에 관심을 기울이고 있다. 본 연구에서는 대체 수자원 활성화 방안 중 빗물 저류지의 용량 결정 방법을 제시하고자 한다. 빗물 저류지의 용량을 결정하기 위해 메타 휴리스틱 방법 중 하나인 입자 군집 최적화(particle swarm optimization; PSO)를 선정하였다. 이는 기존 실제 설계에 사용되고 있는 시행착오법보다 시간을 단축시킬 수 있다. 최적화 모형은 python의 pyswarm package를 이용해 구성하였다. 모형의 입력자료는 저류지 유입량과 목표 공급량, 목표 보장률이고, 목적함수는 빗물 저류지 용량의 최소화이다. 제약조건은 모의된 보장률이 목표 보장률 이상을 달성하는 것이다. 여기서, 보장률은 전체 모의 기간 중 목표 공급량을 공급한 기간의 비율이다. 제시한 방법론의 적용성을 검토하기 위해 실제 저류지가 설계된 인천의 청라지구 1공구를 선정하여 적용하였다. 최적화 모형의 입력 유입량은 SWMM으로 산정된 1995년부터 2004년까지의 유출량이며, 목표 공급량은 실제 설계에 활용된 용수 목적별 요구 수량이다. 여기서 용수 목적별 요구 수량은 대상지역의 노면 청소수, 화장실 세정수, 호수 유지수 등이다. 산정 결과 계산 시간은 약 30초 소요되며, 목표 보장률을 만족하는 저류지 용량이 결정되었다. 본 연구에 제시한 방법은 제약조건이 추가되어도 기존 시행착오법에 비해 간편함을 확인하였다.

  • PDF

Stochastic Generation System Planning Method Incorporating Uncertainties of Delays in Completion of Projects (준공지연 불확실성을 고려한 확률론적 전원설비 최적계획 기법)

  • Moon, Guk-Hyun;Seo, In-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.493-494
    • /
    • 2015
  • 전원설비 투자계획은 주어진 기간 하에서 최적 발전기 투입용량 및 시기를 결정하는 문제이다. 전원설비의 준공일정은 다양한 사회적 요인의 영향으로 불확실성에 노출되어 있다. 본 논문에서는 전원설비 준공 불확실성을 고려한 전원설비 계획 문제를 제시한다. 발전설비의 준공지연 불확실성은 이산 확률론적 밀도함수를 갖는 확률변수로 표현된다. 최적화 문제에서 확률변수를 고려하기 위해 2단계 확률론적 계획법이 도입된다. 주문제-부문제로 분해된 최적화 문제는 쌍대함수 정보를 교환하는 반복연산을 수행하여 최적 전역해에 도달할 수 있다.

  • PDF

Fault Detection Algorithm of Photovoltaic Power Systems using Stochastic Decision Making Approach (확률론적 의사결정기법을 이용한 태양광 발전 시스템의 고장검출 알고리즘)

  • Cho, Hyun-Cheol;Lee, Kwan-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.212-216
    • /
    • 2011
  • Fault detection technique for photovoltaic power systems is significant to dramatically reduce economic damage in industrial fields. This paper presents a novel fault detection approach using Fourier neural networks and stochastic decision making strategy for photovoltaic systems. We achieve neural modeling to represent its nonlinear dynamic behaviors through a gradient descent based learning algorithm. Next, a general likelihood ratio test (GLRT) is derived for constructing a decision malling mechanism in stochastic fault detection. A testbed of photovoltaic power systems is established to conduct real-time experiments in which the DC power line communication (DPLC) technique is employed to transfer data sets measured from the photovoltaic panels to PC systems. We demonstrate our proposed fault detection methodology is reliable and practicable over this real-time experiment.

Probabilistic Runoff Analysis using Ensemble Technoque with Localization Method (앙상블 기반 지역화 기법을 이용한 확률론적 유출량 분석)

  • Lee, Han-Yong;Jang, Suk-Hwan;Lee, Jae-Kyoung;Jo, Jun-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.207-207
    • /
    • 2019
  • 최근 우리나라는 지역 특성 및 기후변화의 영향으로 인해 수문학적 요소의 변동성이 커지고 수자원의 지속적인 관리에 있어 유출량은 중요한 문제로 여겨지고 있다. 특히 일부 소하천 또는 접경지역과 같은 미계측유역은 수문학적 요소에 대한 자료가 부족하고 수문모형의 초기치 설정과 과거 유출량 자료를 통하여 최적화한 매개변수를 결정해야하므로 장기유출분석이 어렵다. 본 연구의 적용유역으로 미계측유역인 임진강상류 유역에 대한 유출량 추정을 위해 계측 유역의 자료를 활용하여 모형의 매개변수 등을 추정하는 지역화 기법인 다중선형회귀분석과 공간근접분석을 활용하여 유출량을 산정 및 검증하였다. 또한, 확률론적 예측이 가능한 앙상블 기법 적용을 통한 유출량 예측을 하였고, 이를 예측 정확성 평가지표를 통해 효율성 검토를 수행하여 미계측유역의 유출량에 대해 확률론적 예측을 수행하였다. 대표적 지역화 기법의 적용성을 검토한 결과, 계측유역을 통해 다중선형회귀분석과 공간근접분석을 abcd 모형에 적용하였다. 모의유출량을 산정하고 실측 유출량과 비교 분석 결과 모의정확성이 높게 분석되었다. 이와 같은 검증 결과를 토대로 미계측유역의 유출량을 추정하였다. 또한, 지역화 기법을 앙상블 기법에 적용하여 확률론적 유출량 예측의 효율성을 검토하였다. 적용유역과 같은 지류를 포함하고 있는 임진강하류 유역을 대상으로 수행하였다. 검증기간(2013년~2017년) 동안의 월 예측 유출량 앙상블 생성을 위해 과거 강우량와 증발량(1988년~2012년) 자료를 사용하였으며, 지역화 기법을 적용한 abcd 모형을 이용하였다. 예측 유출량의 정확성 평가를 실시하였으며, 정확성이 비교적 높게 분석되었다. 이와 같은 결과를 토대로 미계측유역의 확률론적 유출량을 예측하였다. 따라서, 대표적 지역화 기법을 앙상블 기법에 적용하여 확률론적 유출량을 예측할 경우 보다 정확한 유출량 예측이 가능하다.

  • PDF

Optimum Service Life Management Based on Probabilistic Life-Cycle Cost-Benefit Analysis (확률론적 생애주기비용-이익분석 기반 수명관리 최적화 기법)

  • Kim, Sunyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.19-25
    • /
    • 2016
  • Engineering structures including civil infrastructures require a life-cycle cost and benefit during their service lives. The service life of a structure can be extended through appropriate inspection and maintenance actions. In general, this service life extension requires more life-cycle cost and cumulative benefit. For this reason, structure managers need to make a rational decision regarding the service life management considering both the cost and benefit simultaneously. In this paper, the probabilistic decision tool to determine the optimal service life based on cost-benefit analysis is presented. This decision tool requires an estimation of the time-dependent effective cost-benefit under uncertainty to formulate the optimization problem. The effective cost-benefit is expressed by the difference between the cumulative benefit and life-cycle cost of a deteriorating structure over time. The objective of the optimization problem is maximizing the effective cost-benefit, and the associated solutions are the optimal service life and maintenance interventions. The decision tool presented in this paper can be applied to any deteriorating engineering structure.

Optimal Design of Deep-Sea Pressure Hulls using CAE tools (CAE 기법을 활용한 심해 내압구조물의 최적설계에 관한 연구)

  • Jeong, Han Koo;Henry, Panganiban
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.477-485
    • /
    • 2012
  • Geometric configurations such as hull shape, wall thickness, stiffener layout, and type of construction materials are the key factors influencing the structural performance of pressure hulls. Traditional theoretical approach provides quick and acceptable solutions for the design of pressure hulls within specific geometric configuration and material. In this paper, alternative approaches that can be used to obtain optimal geometric shape, wall thickness, construction material configuration and stiffener layout of a pressure hull are presented. CAE(Computer Aided Engineering) based design optimization tools are utilized in order to obtain the required structural responses and optimal design parameters. Optimal elliptical meridional profile is determined for a cylindrical pressure hull design using metamodel-based optimization technique implemented in a fully-integrated parametric modeler-CAE platform in ANSYS. While the optimal composite laminate layup and the design of ring stiffener for a thin-walled pressure hull are obtained using gradient-based optimization method in OptiStruct. It is noted that the proposed alternative approaches are potentially effective for pressure hull design.

A Study on the UAM Vertiport Capacity Calculation MethodUsing Optimization Technique (최적화 기법을 활용한 UAM 버티포트 수용량 산정방법 연구)

  • Seungjun Lee;Hojong Baik;Janghoon Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.55-65
    • /
    • 2023
  • Due to extreme urbanization, ground transportation in the city center is saturated, and problems such as the lack of expansion infrastructure and traffic congestion increase social costs. To solve this problem, a 3D mobility platform, Urban Air Mobility (UAM), has emerged as a new alternative. A vertiport is a physical space that conducts a similar role to an airport terminal. Vertiport consists of take-off and landing facilities (TLOF, Touchdown and Lift-Off area), space for boarding and disembarking from UAM aircraft (gates), taxiways, and passenger terminals. The type of vertiport (structure, number of facilities) and concept of operations are key variables that determine the number of UAM aircraft that can be accommodated per hour. In this study, a capacity calculation method was presented using an optimization technique (Deterministic Integer Linear Programming). The absolute capacity of the vertiport was calculated using an optimization technique, and a sensitivity analysis was also performed.

Variational Bayesian Methods for Learning HMM with Mixture of Gaussian Outputs (가우시안 혼합 출력 HMM을 위한 변분 베이지안 방법)

  • O Jangmin;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.619-621
    • /
    • 2005
  • 은닉 마코프 모델은 이산 동역학을 표현할 수 있는 확률 모형이다. 우도 함수 최적화를 수행하는 전통적인 Baum-Welch 학습 알고리즘은 국소해로 수령하기 쉬우며, 우도함수의 특성상 복잡한 모델을 선호하는 바이어스가 존재한다. 베이지안 프레임워크에서는 파라미터를 랜덤 변수로 보고 이에 대한 사후 확률 분포를 추정하여 이 문제를 해결할 수 있다. 본 논문에서는 베이지안 추정을 위한 결정론적 근사화 기법인 변분 베이지안 방법을 이용, 출력 노드에 가우시안 혼합 노드를 지니는 일반화된 HMM의 추론 방법을 유도한다. 인공 데이터에 대한 실험을 통해, 본 방법이 효과적인 HMM 학습을 수행할 수 있음을 보인다.

  • PDF

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자 알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다. 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고요한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미있는 정보로 변환시켜줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망의 모형결합을 통해 기존연구과는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서는 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이브릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다. 기존의 주기분할방법론은 모형개발자입장에서 여러 가지 통계기준치중에서 최적의 기준치를 합리적으로 선택해야 하는 문제가 추가적으로 발생하며, 본 연구에서는 이상의 제반 문제들을 개선시키기 위해 통합방법론으로서 기존의 인공신경망모형을 구조적으로 확장시켰다. 이 모형에서 기존의 입력층 이전단계에 새로운 층이 정의된다. 이렇게 해서 생성된 새로운 통합모형은 기존모형에서 생성되는 기본적인 학습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.

  • PDF

몬테카를로 최소자승법을 이용한 확률론적 기술가치평가 모형 연구

  • Seong, Tae-Eung;Lee, Jong-Taek;Kim, Byeong-Hun;Park, Hyeon-U
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2017.11a
    • /
    • pp.715-721
    • /
    • 2017
  • 기술거래 시장의 활성화에 대한 연구개발서비스 분야 종사자들의 관심이 높아지고 있으며, 특히 공공 및 민간 분야의 휴면 기술(특허)에 대한 이전 거래를 통해 불필요한 특허유지 비용을 줄이고 부가적인 기술료 창출 효과를 거둘 수 있다. 본 연구에서는 현재까지 기술이전(거래), 현물출자, 기술금융(융자, 담보대출) 등 다양한 목적으로 실무에서 활용되어 온 기술가치평가 모형의 한계점을 고민해 보고, 이에 대한 개선방안으로서 몬테카를로 최소자승법 기반의 확률론적 가치평가 모형을 제시한다. 기존의 가치평가 모형은 평가산출을 위한 입력변수의 확정적 값들에 기반하여 가치액이 산출되었으나, 대표적 기법인 현금흐름 할인법이나 로열티공제법의 경우 미래의 수익예상기간, 예상매출액 등에서는 불확실성(uncertainty)가 내재되어 있다. 따라서 특정 분포(distribution)에 대한 확률론적 가능성을 가정하고 이에 대한 수학적 최적화 논리로부터 몬테카를로 최소자승 관게에 의한 변수결정 및 가치평가액 산정을 할 수 있는 평가모듈을 개발한다. 향후 연구에서는 기 평가된 사례결과를 딥러닝(deep learning) 방식으로 학습하여, 발생가능성 높은 각 변수값의 범위들을 산출하고 이로부터 기술가치 범위를 추론하는 시스템을 개발하는 것도 가능할 것으로 기대된다.

  • PDF