• 제목/요약/키워드: 결정군집

검색결과 507건 처리시간 0.026초

붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정 (Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm)

  • 박민재;전성해;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.263-266
    • /
    • 2002
  • 데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다.

유효성 기반 군집화 알고리즘 (Validation-based Clustering Algorithm)

  • 김민호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.19-21
    • /
    • 2003
  • 본 논문에서는 군집화의 가장 중요한 2가지 문제에 대한 새로운 해결책을 제시한다. 첫 번째 문제는 두 객체가 하나의 군집내에 포함될 수 있는지를 결정하는 유사 결정으로써, 이를 해결하기 위해 군집 유효화 지수에 기반한 유사 결정 기법을 제안한다. 이 기법은 정성적인 인지 과정을 정량적인 비교 결정 과정으로 바꾼다 이 기법은 본 논문에서 제안한 랜덤 군집화와 전체 군집화의 두 부분으로 구성된 유효성 기반 군집화 알고리즘의 핵심을 이루며. 기존의 않은 군집화 알고리즘에서 요구되는 복잡한 파라미터를 결정할 필요가 없어지도록 한다. 두 번째 문제는 최적 군집 수 (optimal number of clusters)를 찾는 것으로써, 이것 또한 앞에서 제안한 기법에 의해서 전체 군집화에서 찾을 수 있다. 마지막으로 제안한 기법과 군집화 알고리즘의 효용성 및 효율성을 보여주는 실험 결과가 제시된다.

  • PDF

붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정 (Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm)

  • 박민재;전성해;오경환
    • 한국지능시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.12-17
    • /
    • 2003
  • 데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다

군집수 결정 문제 (How to determine the number of clusters)

  • 윤복식
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.689-693
    • /
    • 2004
  • 주어진 데이터를 일정한 기준에 따라 여러 개 군집으로 분할할 때 대부분 경우는 군집수에 대한 사전 정보가 없이 군집화를 실시하게 된다. 적절한 군집수의 결정은 군집화 결과의 타당성에 전제가 되는 매우 중요한 문제이나 내재된 복잡성 때문에 실제 적용에 간편한 방법을 찾기 힘들고 더구나 다양한 형태의 데이터에 보편적으로 적합한 방법을 찾기는 더욱 어렵다. 본 연구에서는 기존의 제시된 군집수 결정방법 들의 아이디어 들을 소개하고 주어진 데이터의 종류에 관계없이 일반적으로 적용할 수 있는 새로운 군집수 결정기법을 제시한다. 대부분의 경우 군집수 결정은 군집화와 동시에 이루어지게 되므로 이것을 한꺼번에 처리하는 범용의 방법도 소개한다. 적용 예제들을 통한 타당성 검증도 이루어진다.

  • PDF

밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병 (Cluster Merging Using Density based Fuzzy C-Means algorithm)

  • 한진우;전성해;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.235-238
    • /
    • 2003
  • Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.

  • PDF

통계적 학습이론을 이용한 최적 군집화 (An Optimal Clustering Using Statistical Learning Theory)

  • 최준혁;전성해;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.229-233
    • /
    • 2005
  • 모집단의 최적군집 수를 자동으로 결정하고 군집내의 분산은 최소로 하고 군집 간의 분산은 최대로 하는 최적 군집화에 대한 연구는 대부분의 지능형 시스템에서 필요로 하는 모형전략이다. 하지만 아직도 대부분의 군집화 과정에서 분석가의 주관적인 경험에 의존하여 군집수가 결정되어 군집화가 이루어지고 있다. 예를 들어 K-평균 군집화 알고리즘에서도 초기에 K 값을 결정해 주어야 한다. 모집단을 제대로 대표하지 못한 K 값에 의한 군집화 결과는 심각한 오류를 범하게 된다. 본 논문에서는 통계적 학습이론을 이용하여 이러한 문제점을 해결하려고 하였다. VC-차원에 의한 Support Vector를 이용하여 최적의 군집화 기법을 제안하였다. 제안 방법의 성능 평가를 위하여 UCI 기계학습 데이터를 이용하여 객관적인 실험을 수행하였다.

  • PDF

군집화를 위한 베이지안 학습 기반의 퍼지 규칙 추출 (Bayesian Learning based Fuzzy Rule Extraction for Clustering)

  • 한진우;전성해;오경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.389-391
    • /
    • 2003
  • 컴퓨터 학습의 군집화는 주어진 데이터를 서로 유사한 몇 개의 집단으로 묶는 작업을 수행한다. 군집화를 위한 유사도 결정을 위한 측도는 많은 기법들에서 매우 다양한 측도들이 사용되고 또한 연구되어 왔다. 하지만 군집화의 결과에 대한 성능측정에 대한 객관적인 기준 설정이 어렵기 때문에 군집화 결과에 대한 해석은 매우 주관적이고 애매한 경우가 많다. 퍼지 군집화는 이러한 애매한 군집화 문제에 있어서 융통성 있는 군집 결정 방안을 제시해 준다. 각 개체들이 특정 군집에 속하게 될 퍼지 멤버 함수값을 원소로 하는 유사도 행렬을 통하여 군집화를 수행한다. 본 논문에서는 베이지안 학습을 통하여 군집화를 위한 퍼지 멤버 함수값을 구하였다. 본 연구에서는 최적의 퍼지 군집화 수행을 위하여 베이지안 학습 기반의 퍼지 규칙을 추출하였다. 인공적으로 만든 데이터와 기존의 기계 학습 데이터를 이용한 실험을 통하여 제안 방법의 성능을 확인하였다.

  • PDF

효율적인 군집화 시스템의 개발을 위해 유전자 알고리즘의 적용 (Application of Gene Algorithm for the development of efficient clustering system)

  • 이호현;조범준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.277-280
    • /
    • 2003
  • 현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 다라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내어 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려한다.

  • PDF

유전자 알고리즘을 이용한 효율적인 패턴 분류 시스템 구현 (The implementation of efficient pattern classification system using the gene algorithm)

  • 이호현;최용호;서원택;조범준
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.792-795
    • /
    • 2002
  • 현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화 시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근 횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 따라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 LONGEPRO 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내여 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려 한다.

  • PDF

범주형 데이터 집합에 대한 엔트로피 기반 군집 유효화 기술 (Entropy-based Clustering Validation Technique for Categorical Data Sets)

  • 박남현;안창욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.477-480
    • /
    • 2004
  • 본 논문에서는 고차원의 특성을 가진 범주형 데이터 집합의 군집 유효화 기술에 대하여 알아본다. 먼저, 범주형 데이터 집합에 대하여 한 군집의 센트로이드를 정의함에 따라 일반적인 군집화 방법에서 사용되는 쌍 유사성 측정을 가능하게 한다. 다음으로, 범주형 데이터 집합에 대한 증분 군집 알고리즘을 통하여 도출된 결과에 대해 최적 군집 수의 결정하기 위하여 엔트로피 기반 군집 유효화 지수를 사용한다. 이를 통하여 일반적인 군집 알고리즘에서 최적 결과를 얻기 위해 필요한 문턱값 결정 문제를 손쉽게 해결한다. 마지막으로, 위의 개념들을 여러 데이터 집합에 대해 실험한다.

  • PDF