• Title/Summary/Keyword: 결빙시험

Search Result 32, Processing Time 0.027 seconds

Finite Element Analysis of Concrete Railway Sleeper Damaged by Freezing Force of Water Penetrated into the Inserts (고속철도 콘크리트 궤도 매립전 내 침투수의 결빙압에 의한 균열손상해석)

  • Moon, Do-Young;Zi, Goang-Seup;Kim, Jin-Gyun;Jang, Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.240-247
    • /
    • 2011
  • Finite element analysis was undertaken to investigate the effect of freezing force of water unexpectedly penetrated into inserts used in railway sleeper on pullout capacity of anchor bolts for fixing base-plate onto concrete sleeper. Based on the in-situ investigation and measurement of geometry of railway sleeper and rail-fastener, the railway sleeper was modeled by 3D solid elements. Nonlinear and fracture properties for the finite element model were assumed according to CEB-FIP 1990 model code. And the pullout maximum load of anchor bolt obtained from the model developed was compared with experimental pullout maximum load presented by KRRI for verification of the model. Using this model, the effect of position of anchor bolt, amount of fastening force applied to the anchor bolt, and compressive strength of concrete on pull-out capacity of anchor bolts installed in railway sleeper was investigated. As a result, it is found that concrete railway sleepers could be damaged by the pressure due to freezing of water penetrated into inserts. And the pullout capacity of anchor bolt close to center of railway is slightly greater than that of the others.

Design and Test of an Assembly of Air Intake and Variable Geometry Inertial Separator for a Turboprop Aircraft (터보프롭 항공기용 흡입구 덕트 및 가변형 관성분리기 조립체 설계 및 시험)

  • Kim, Woncheol;Oh, Seonghwan;Lee, Sanghyo;Park, Jonghwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.714-719
    • /
    • 2013
  • A turboprop aircraft for this study is required to operate at icing condition in order that it performs its given mission. So an air intake system of the turboprop aircraft should be designed and verified not only to provide the maximum possible total pressure at engine inlet at normal flight condition, but also to include an inertial separator which protects Foreign Object Debris (FOD) like ice or snow at icing condition from entering into the engine inlet screen which can cause or lead an catastrophic engine failure like engine flame-out or severe damage. So an air intake assembly incorporating a variable geometry inertial separator has been designed and then CFD/structural analysis for the assembly was performed to see its design results. Then 35% scaled model of the air intake assembly was manufactured and wind tunnel test was done. This paper describes the detailed design results for the aerodynamic design, analysis and wind tunnel testing during the development process of the air intake assembly.

Analysis of Geothermal Melting System Conductivity for Improving Road Safety (도로주행 안정성 향상을 위한 지열 융설시스템 열전도 분석)

  • Lee, Seok-Jin;Kim, Bong-Chan;Lee, Seung-Ha;Seo, Un-Jong;Kim, Jin-Han;Lee, Joo-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Sliding accidents on the road have a high percentage by road freezing, especially, they often have appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out; pavement materials of concrete and asphalt where the system is buried. The heat transfer simulation is essential when the geothermal snow melting system is applied according to heating exchanger pipe placed in the lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. Many variables are discovered from numerical analyses under the same conditions with model test.

  • PDF

Field Test to Investigate Heat Transferring Effect of Carbon Fiber Heating Wire on the Concrete Slab (현장시험을 통한 Carbon fiber heating wire의 콘크리트슬래브 열전달 효과)

  • Kim, Hee Su;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.31-38
    • /
    • 2019
  • Field tests with carbon fiber heating wire (CFHW) embedded inside concrete slab were performed to present the alternative heating material capable of avoid the adverse effects of traditional de-freezing salt on the structures and environment. The CFHW was inserted into the concrete slab in the shape of 'ㄷ' to improve the heat superposition and the temperature on the surface was measured using iButton. The results showed that the temperature where the CFHW's were faced with each other increased to above zero after 12-hour at outdoor air temperature of $-6^{\circ}C$. Comparatively, the temperature slightly increased where the CFHW was embedded on one side because the heat was not superimposed. Hence, it can be said that the CFHW is a suitable heating material to prevent the concrete road from being frozen.

Freeze-Thaw Durability and Carbonation of Concrete Surface Protecting materials (콘크리트 표면보호재 종류에 따른 동결융해 및 중성화 내구특성)

  • Lee, Beung-Duk;Kim, Hyun-Joong;Kwon, Young-Rak;Kim, Sye-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.593-596
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Use of deicing chemicals has been and will continue to be a major part of concrete structure in the highway. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. In this study, Use of deicing chemicals has been and will continue to be a major part of highway freeze-thaw durability and carbonation of concrete surface protecting materials

  • PDF

A Study on Anti-Icing Technique for Weather-Tight Door of Ice-Strengthened Vessels (내빙선박용 풍우밀 문의 결빙방지 기법 연구)

  • Jeong, Seong-Yeob;Chun, Eun-Ji;Cho, Seong-Rak;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.575-580
    • /
    • 2011
  • Icing problem of ice-strengthened vessels is an important issue when operating in low temperature environment and it can cause damage to deck machineries and emergency equipments. Many ice-strengthened vessels have since been constructed and operated in accordance with the ice class rules such as Det Norske Veritas (DNV), Russian Maritime Register of Shipping (RS), American Bureau of Shipping (ABS) and so on. Therefore winterization is defined as the preparation of a ship for safe operation. In this research, anti-icing performance tests of weather-tight door have been carried out at various temperature conditions($5^{\circ}C$, $-10^{\circ}C$, $-20^{\circ}C$, $-30^{\circ}C$, $-40^{\circ}C$) in the low temperature cold room facility and then, ambient temperature, specimen temperature, electric current and temperature of heating cable were measured during the test operations. This research describes the construction guidelines of weather-tight door based on anti-icing test results to apply to the full-scale vessels.

Effect of Pen Floor Condition Depending upon Housing Orientation on the PerFormance of Finishing Hanwoo Steers (우사의 향방에 따른 사육장 바닥면의 조건이 비육말기 거세한우의 생산성에 미치는 영향)

  • 김동균;정다운
    • Journal of Animal Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • In order to investigate the effect of floor condition on the fattening performance of cattle, sixteen finishing Hanwoo steers of weighting 570kg were fed for 16 weeks to slaughter on two types of sawdust bedding pen oriented to the south(SP) and the north(NP) then obtained following results. The floor condition of SP roofed by transparent material was dry and flat during overall experimental period, whereas, that of NP roofed by solid slate was muddy and rough even in summer and fall, and then frozen in winter period resulted in interfering with the locomotion and resting behavior of steers. Average daily dry matter intake of steers was not different between tow treatments, however, the average daily gain of steers in NP and SP was 0.64kg and 0.75kg, respectively, meaning that gained 14.3% less for the NP group(p<0.05), accordingly, feed requirement(feed/gain) and TDN/gain increased by 15.9% and 15.5%, respectively. No significant differences were found in slaughter weight, carcass weight, dressing percentage, meat yield index and meat quality traits between two treatments. In conclusion, this study revealed that poor floor condition of feeding pen could decrease weight gain and feed efficiency of cattle by increasing energy consumption for locomotion and conductive energy loss while resting on the floor surface. These results indicates that housing orientation of cattle shed and the selection of roof material are important factors in beef cattle production.

  • PDF

Development of a water meter freeze test device for predicting the freezing time based on AI (AI 기반 동파시기 예측을 위한 수도계량기 동파시험장치 개발)

  • Kim, Kuk-il;An, Sang-byung;Kim, Jin-hoon;Hong, Sung-taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.233-234
    • /
    • 2021
  • The freezing of the water meter due to the cold wave in winter causes safety accidents caused by freezing and suspending the supply of tap water and various inconveniences. In this study, the water meter develops a test device similar to the environment in which the actual freezing occurs and tests repeatedly by changing the temperature, humidity, flow rate, pressure, valve improvement, pump operation status, etc. Based on the data obtained through this, it is planning to predict the timing of freezing by applying AI technology to correlation between freeze influencing factors.

  • PDF

A Study on Quality Improvement for the Prevention of Water Infiltration and Corrosion of Helicopter MRA Control-Rod (회전익 항공기 MRA 조종로드 방수 및 부식 방지에 관한 연구)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.92-100
    • /
    • 2017
  • The Helicopter MRA Control Rod System has the important function of controlling the speed, height, and direction of helicoptersby adjusting the main rotor disc. However, the ingress of water into the inner control rod can cause ice damage in the rod during winter operation and also corrosion;these defects need to be rectified. The water flowed into the control rod through the upper side space, and the rod was cracked during icing expansion occurring at low temperature. The corrosion occurred due to the lack of coating process during the manufacturing process. To resolve these problems, the upper rod was sealed to prevent water inflow and a coating process was added to prevent corrosion. These solutions were verified by awaterproof test and a salt fog test. The phenomena, causes and measures were reviewed and the methods of improvement were established and proven. This proposed technology to prevent water infiltration and corrosion will contribute to the safety of rotary wing aircraft.

Mechanical Characteristics of Stainless Steel TP 304, TP 316 under Low Temperature Environment (저온 기계 재료용 TP 304, TP 316 소재의 저온거동 특성 평가)

  • Cho, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.125-130
    • /
    • 2017
  • Automotive materials and plant modules need to be prepared for freezing parts to operate in extreme areas such as Eastern Europe, Russia, and Canada. However, the only thing that has been done for ultra-qualifying materials for extremely low operating materials is that only the effects at low temperatures are conducted at room temperature, and the effects at low temperatures are only identified at low speeds. Therefore, this study examined the low-temperature characteristics of materials by conducting comparative tests on the mechanical properties of the room at the temperature and temperature of TP304 and TP316 materials, which are the most common materials.