• 제목/요약/키워드: 결과예측

검색결과 20,663건 처리시간 0.045초

수위예측 알고리즘 정확도 향상을 위한 Hybrid 활성화 함수 개발 (Development of hybrid activation function to improve accuracy of water elevation prediction algorithm)

  • 유형주;이승오
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.363-363
    • /
    • 2019
  • 활성화 함수(activation function)는 기계학습(machine learning)의 학습과정에 비선형성을 도입하여 심층적인 학습을 용이하게 하고 예측의 정확도를 높이는 중요한 요소 중 하나이다(Roy et al., 2019). 일반적으로 기계학습에서 사용되고 있는 활성화 함수의 종류에는 계단 함수(step function), 시그모이드 함수(sigmoid 함수), 쌍곡 탄젠트 함수(hyperbolic tangent function), ReLU 함수(Rectified Linear Unit function) 등이 있으며, 예측의 정확도 향상을 위하여 다양한 형태의 활성화 함수가 제시되고 있다. 본 연구에서는 기계학습을 통하여 수위예측 시 정확도 향상을 위하여 Hybrid 활성화 함수를 제안하였다. 연구대상지는 조수간만의 영향을 받는 한강을 대상으로 선정하였으며, 2009년 ~ 2018년까지 10년간의 수문자료를 활용하였다. 수위예측 알고리즘은 Python 내 Tensorflow의 RNN (Recurrent Neural Networks) 모델을 이용하였으며, 강수량, 수위, 조위, 댐 방류량, 하천 유량의 수문자료를 학습시켜 3시간 및 6시간 후의 수위를 예측하였다. 예측정확도 향상을 위하여 입력 데이터는 정규화(Normalization)를 시켰으며, 민감도 분석을 통하여 신경망모델의 은닉층 개수, 학습률의 최적 값을 도출하였다. Hybrid 활성화 함수는 쌍곡 탄젠트 함수와 ReLU 함수를 혼합한 형태로 각각의 가중치($w_1,w_2,w_1+w_2=1$)를 변경하여 정확도를 평가하였다. 그 결과 가중치의 비($w_1/w_2$)에 따라서 예측 결과의 RMSE(Roote Mean Square Error)가 최소가 되고 NSE (Nash-Sutcliffe model Efficiency coefficient)가 최대가 되는 지점과 Peak 수위의 예측정확도가 최대가 되는 지점을 확인할 수 있었다. 본 연구는 현재 Data modeling을 통한 수위예측의 정확도 향상을 위해 기초가 되는 연구이나, 향후 다양한 형태의 활성화 함수를 제안하여 정확도를 향상시킨다면 예측 결과를 통하여 침수예보에 대한 의사결정이 가능할 것으로 기대된다.

  • PDF

슈퍼스칼라 프로세서에서 모험적 갱신을 사용한 하이브리드 값 예측기 (A Hybrid Value Predictor using Speculative Update in Superscalar Processors.)

  • 신영호;윤성룡;박홍준;이원모;김주익;조영일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (3)
    • /
    • pp.639-641
    • /
    • 2000
  • 슈퍼스칼라 프로세서는 성능향상을 위해 명령어 반입 폭과 이슈 폭을 증가시키고 있다. 최근 여러 논문들에서 데이터 종속성을 제거하기 위해서 명령어의 결과 값을 예상하는 메커니즘이 연구되었다. 그러나 그러한 예측기들은 예상한 명령어의 실제 결과 값으로 예상 테이블을 갱신하기 전에 그 명령어를 다시 예상할 때 예상 실패율이 증가하여 프로세서의 성능을 감소시킨다. 본 논문에서는 비 순서적(out-of-order)으로 이슈 및 실행하는 프로세서에서 예상 적중율을 향상시키기 위해 명령어 반입 시 결과 값을 예상하는 동시에 예측기 테이블을 모험적으로 갱신(Speculative update)하는 하이브리드 결과 값 예측기를 제안한다. 본 논문에서 제안한 모험적 갱신이 예상 적중률을 향상시킬 수 있음을 보이기 위해 SimpleScalar 3.0 툴 셋을 사용하여 SPECint95 벤치마크 프로그램에서 명령어를 예상한 후 결과가 구해져서 예상테이블을 수정하기 전에 그 명령어를 다시 예상하는 빈도수를 측정하였다.

  • PDF

베이지안 모델 불확실성에 기반한 오픈도메인 질의응답 (Bayesian Model Uncertainty for Open-domain Question Answering)

  • 이영훈;나승훈;최윤수;장두성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.93-96
    • /
    • 2019
  • 최근 딥러닝 모델을 다양한 도메인에 적용하여 뛰어난 성능을 보여주고 있다. 하지만 딥러닝 모델은 정답으로 제시된 결과가 정상적으로 예측된 결과인지, 단순히 오버피팅에 의해 예측된 결과인지를 구분하기 어렵다. 이러한 불확실성(Uncertainty)을 측정 할 수 없다는 문제점을 해결하기 위해서 본 논문에서는 베이지안 딥러닝 방법 중 하나인 변분추론(Variational Inference)과 몬테카를로 Dropout을 오픈도메인(Open-Domain) 태스크에 적용하고, 예측 결과에 대한 불확실성을 측정하여 예측결과에 영향을 주는 모델의 성능을 측정해 효과성을 보인다.

  • PDF

WASP 7.2와 예측된 동물성플랑크톤을 이용한 물금의 수질예측 (Water Quality Forecast in the Mulgeum Using WASP 7.2 and Forecasted Zooplankton)

  • 최정민;이상호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1679-1683
    • /
    • 2008
  • 낙동강 하류지점인 물금은 2003년${\sim}$2005년의 대부분이 부영양화의 기준을 넘고 있다. 하구둑 건설이후, 담수화 된 하구둑 상부에서는 부영양화가 가속화되었다. 수질의 악화는 물론 강 생태계의 구조와 기능의 변화까지 초래되었다. 지난 $7{\sim}8$년 간 낙동강 하류 지역은 갈수기 식물성 플랑크톤 군집의 대거 번성으로 인한 부영양화로 연중 심각한 수질 오염문제를 야기하고 있다. 본 연구는 WASP 7.2 모형과 예측된 동물성플랑크톤을 이용하여 낙동강 유역의 하류 지역인 물금의 부영양화를 예측하는 것이다. 2005년의 관측값을 초기조건으로 고정하고 DO, $NO_3$-N, $PO_4$-P, 기상청에서 예보되는 기온을 사용하여 동물성 플랑크톤을 신경망 모형으로 예측한 뒤, 수온 대신 기상청의 기온을 입력하여 $1{\sim}3$일 후의 단기 수질을 예측하였다. 부영양화 예측결과와 2005년의 월별 수질 관측값을 통계량을 이용하여 분석하였다. $1{\sim}3$일 후의 예측결과 수질항목 중 부영양화의 기준이 되는 클로로필-a, 총 질소, 총 인의 경우는 예측기간 모두 관측값에 적합하게 모의되었다. WASP 7.2 모형의 수질항목 관측자료를 초기값으로 입력하고, 예측된 동물성 플랑크톤의 개체수와 기상청에서 예보되는 기온을 사용한 수질모의는 낙동강의 단기 수질예측에 유의한 의미가 있을 것으로 사료된다.

  • PDF

학년진급률에 따른 학생수 예측방법 (The methods of forecasting for the number of student based on promotion proportion)

  • 김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.857-867
    • /
    • 2009
  • 본 연구는 학년 (연령) 진급에 따른 인구증감률에 대하여 전국 학생수를 예측하는 다양한 방법들을 제시하고, 제시된 예측 모형들을 이용하여 출생아들이 고3학생이 되는 18년 후인 2026까지의 학생수를 예측하는 것이다. 이동평균과 시계열모형, 회귀분석 등 다양한 예측모형들이 사용되었고, 적합 척도들을 이용하여 이들의 오차들을 측정하였다. 예측오차를 측정하는 도구들을 기준으로 제시된 예측방법들 중 이동평균에 의한 방법은 쉽고 단순한 장점을 지니면서도 기존에 예측되어진 한국교육개발원의 예측결과 뿐 아니라 회귀분석 및 시계열예측의 고등기법들의 결과들 보다 예측 능력이 우수한 것으로 나타났다.

  • PDF

선물시장과 전문가예측시스템의 가격예측력 비교 - WTI 원유가격을 대상으로 - (Comparison of Price Predictive Ability between Futures Market and Expert System for WTI Crude Oil Price)

  • 윤원철
    • 자원ㆍ환경경제연구
    • /
    • 제14권1호
    • /
    • pp.201-220
    • /
    • 2005
  • 최근 들어, 우리는 유례 없는 국제 유가의 급등현상을 목격하고 있다. 이러한 시점에서, 의문점은 유가에 대한 예측 가능성과 이의 정확도에 관한 것이다. 본 연구에서는 전문가 예측시스템과 비교하여 선물가격의 상대적인 예측력에 관하여 통계적으로 분석하고자 한다. 이를 위해, 미국 텍사스 중질유(WTI)의 현물가격과 선물가격을 활용하여, 예측 정확도에 관한 단순한 형태의 통계적 분석과 함께 분석수단별 예측오차 차이의 유의성에 관한 체계적 분석을 시도하였다. 통계적 검정결과에 따르면, WTI 선물시장을 활용한 예측은 미국 에너지정보기구(EIA)의 예측과 비교하여 뒤지지 않는 것으로 판명되었다. 결과적으로, 석유 생산자와 소비자 모두가 WTI 선물시장을 유가 예측의 유용한 수단으로 활용할 수 있고, 이로써 효율적인 자원배분 측면에서도 유익할 것으로 판단된다.

  • PDF

SRK 행동 모형을 이용한 인적오류 모델 설계 방안 (Design of Human Error Model Using SRK-Based Behavior)

  • 임정빈;양형선;박득진
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2017년도 추계학술대회
    • /
    • pp.259-261
    • /
    • 2017
  • SRK-BB(Skill-, Rule-, Knowledge-Based Behavior)는 주어진 사건을 처리할 때 인간이 행하는 행동을 체계적으로 식별하기 위한 하나의 이론이다. 이러한 SRK-BB에 대한 결과는 주어진 임무에 대한 '성공'과 '실패'로 나타낼 수 있다. 만약, 어느 사건에 대한 SRK-BB를 식별할 수 있고, 이에 대한 '성공/실패'의 결과를 알 수 있다면, SRK-BB를 이용하여 이들 사이에 연계된 확률적인 관계를 정립할 수 있다. 한편, 해양사고의 결과를 분석한 해양안전심판원의 재결서 또는 재결요약서에는 다양한 사고(즉, 실패한 사건)에 대해서 해기사가 어떠한 행동을 취했는지 상세하게 기록되어 있다. 이러한 해양안전심판원의 자료를 분석하면 실패한 해양사고에 대한 방대한 해기사의 SRK 분포를 확보할 수 있다. 본 연구의 목적은 다양한 해양사고에 나타난 해기사들의 행동을 SRK-BB로 식별한 후 해기사들이 추후 야기할 수 있는 인적오류를 예측하기 위한 모델 구축에 있다. 인적오류 모델을 구축하기 위해서는 우선 해양사고에 포함된 SRK 분포 분석이 필요하고, 시스템적인 입출력 관계를 통해서 SRK에 의한 인적오류의 결과를 예측하기 위한 예측 모델이 필요하다. 본 연구에서는 해기사의 인적오류에 의한 사고를 어떻게 SRK 분포를 이용하여 예측할 수 있는지에 대한 개념을 설명하고, 해양사고 데이터에서 획득한 SRK 분포의 의미와, SRK 분포를 이용하여 어떻게 해기사가 야기할 사고를 예측할 수 있는지에 대한 연구접근 방법을 소개하고자 한다.

  • PDF

반밀폐된 구획에서 비정상 화재특성 예측을 위한 FDS의 평가 (An Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed Compartment)

  • 황철홍;문선여;박충화;김종현
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2011년도 추계학술논문발표회 논문집
    • /
    • pp.3-6
    • /
    • 2011
  • 비정상(unsteady) 화재성장이 발생되는 반밀폐된 구획에서 환기부족화재의 열 및 화학적 특성에 관한 FDS(Fire Dynamics Simulator)의 예측성능 평가가 수행되었다. 이를 위해 실규모 ISO 9705 표준 화재실의 출입구 폭이 0.1m로 축소되었으며, spray 노즐을 통해 Heptane 연료유량은 선형적으로 증가되었다. 수치계산에 대한 신뢰도 확보를 위하여 동일조건에서 수행된 실험결과와의 상세한 비교가 이루어졌다. 적절한 격자계를 이용한 FDS의 결과는 구획 내부의 온도 및 열유속(heat flux)은 비교적 잘 예측하지만, 비정상 CO 및 $CO_2$ 생성특성은 적절히 예측하지 못함을 확인하였다. 이러한 결과는 최근 수행된 유사조건의 정상상태 환기부족 구획화재에 대한 FDS 예측결과와 상반된 것으로서, 반밀폐된 구획화재 모델링에서 FDS를 이용한 비정상 CO 생성특성 예측에 상당한 주위가 요구됨을 확인하였다.

  • PDF

Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델 (River stage forecasting models using support vector regression and optimization algorithms)

  • 서영민;김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

지천유입이 있는 대하천에서 수질예측을 위한 인공신경망모델의 개발 (Development of Artificial Neural Network Model for Prediction of Water Quality Parameters in Large Rivers with Tributary Inflow)

  • 서일원;윤세훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.141-141
    • /
    • 2017
  • 본 연구에서는 대하천의 8개의 수질인자(수온, 용존산소, 수소이온농도, 전기전도도, 총질소, 총인, 탁도, 클로로필-a)를 예측할 수 있는 인공신경망모델을 개발하였다. 인공신경망모델(ANN)은 수질데이터가 가지는 불확실성 및 비정상성, 복잡한 상호관련성에 효과적으로 대응할 수 있는 데이터기반 모델이다. 데이터기반 모델의 특성상 예측정확도를 높이기 위해서 양질의 입력데이터를 구성하는 것이 가장 중요하다. 때문에 각각의 수질인자뿐만 아니라 기상학적 인자 또한 예측을 위한 입력자료로 사용하였으며, 요인분석 및 층화표층추출법을 적용하여 입력데이터를 구성하였고 앙상블기법을 이용하여 추가적으로 예측의 정확도를 향상시켰다. 개발된 모델을 이용하여 지천유입이 있는 북한강의 수질자료를 예측한 결과 탁도를 제외한 7개의 수질인자 모두 0.85 이상의 설명력을 보였으며, 실측값과 예보값을 비교해본 결과 평균적으로 10% 미만의 에러값을 나타냈다. 요인분석을 통하여 연관성있는 인자를 입력인자로 추가한 경우 향상된 결과값을 보였주었으며, 앙상블기법을 적용한 결과 정확도 면에서 큰 향상을 보여주었다.

  • PDF