Proceedings of the Korea Information Processing Society Conference
/
2021.05a
/
pp.505-508
/
2021
반도체 회로의 미세화로 단위 공정이 증가하면 TAT(turn-around time) 증가에 따른 제조 비용이 늘어난다. 반도체 공정 중 포토 공정은 마스크의 회로를 웨이퍼에 전사하는 공정으로 전사를 담당하는 노광장비의 성능에 의해 회로의 정확성이 결정된다. 이런 정확성을 검증하는 계측공정은 회로의 미세화가 진행될수록 필요성은 증가하나 TAT 증가의 주된 요인으로 최근 기계학습을 사용한 다양한 예측 모형들의 개발로 계측 결과를 예측하는 실험들이 진행되고 있다. 본 논문은 노광장비 센서들의 이상값을 감지하여 분류 후 계측공정을 진행하는 LFDC(Lithography Fault Detection and Classification) 시스템의 문제인 분류 성능이 떨어지는 것을 해결하기 위해 XGBoost를 사용하여 계측공정을 진행하지 않고 노광장비 센서의 이상값을 학습된 학습기를 통해 분류하여 포토 공정을 재진행하거나 다음 공정을 진행하는 방법을 실험하였다. 실험에서 사용된 계측 결과 예측 모형은 89%의 정확도를 확보하였고 반도체 데이터 특성인 심각한 불균형의 데이터에 대해서도 같은 정확도를 얻었다. 이런 결과는 노광장비 센서들의 이상값에 대해 89%는 정상으로 판단하였고 정상으로 판단한 웨이퍼를 실제 계측 시 예측과 같은 결과를 얻었다. 계측 결과 예측 모형을 사용하면 실제 계측을 진행하지 않고 노광장비 센서들의 이상값에 대한 판정을 할 수 있어 TAT 단축으로 제조 비용감소, 계측 장비 부하 감소 및 효율 향상을 할 수 있다. 하지만 본 논문에서는 90%의 성능을 보이는 계측 결과 예측 모형으로 여전히 10%에 대해서는 실제 계측이 필요한 문제에 대해 추후 더 연구가 필요하다.
The model using time series data can be considered as a flood forecasting model of a small river due to its efficiency for model development and the advantage of rapid simulation for securing predicted time when reliable data are obtained. Transfer Function Noise (TFN) model has been applied hourly flood forecast in Italy, and UK since 1970s, while it has mainly been used for long-term simulations in daily or monthly basis in Korea. Recently, accumulating hydrological data with good quality have made it possible to simulate hourly flood prediction. The purpose of this study is to assess the TFN model applicability that can reflect exogenous variables by combining dynamic system and error term to reduce prediction error for tributary rivers. TFN model with hourly data had better results than result from Storage Function Model (SFM), according to the flood events. And it is expected to expand to similar sized streams in the future.
Tak, Haesung;Kim, Taeyong;Cho, Hwan-Gue;Kim, Heeje
The Journal of the Korea Contents Association
/
v.16
no.11
/
pp.488-498
/
2016
Much of the information is stored as data, research has been activated for analyzing the data and predicting the special circumstances. In the case of power data, the studies, such as research of renewable energy utilization, power prediction depending on site characteristics, smart grid, and micro-grid, is actively in progress. In this paper, we propose a power prediction model using the substation environment data. In this case, we try to verify the power prediction result to reflect the multiple arguments on the power and weather data, rather than a simple power data. The validation process is the effect of multiple factors compared to other two methods, one of power prediction result considering power data and the other result using power pattern data that have been made in the similar weather data. Our system shows that it can achieve max prediction error of less than 15%.
Design of a linear predictor and matching of an entropy coder is the art of lossless audio coding. In this paper, we use the covariance method and the Choleskey decomposition for calculating linear prediction coefficients instead of the autocorreation method and the Levinson-Durbin recursion. These results are compared to the polynomial predictor. Both of them, the predictor which has small prediction error is selected. For the entropy coding, we use the Golomb-Rice coder using the block-based parameter estimation method and the sequential adaptation method with LOCO-land RLGR. The proposed predictor and the block-based parameter estimation have $2.2879%{\sim}0.3413%$ improved compression ratios compared to FLAC lossless audio coder which use the autocorrelation method and the Levinson-Durbin recursion. The proposed predictor and the LOCO-I adaptation method could improved by $2.2879%{\sim}0.3413%$. But the proposed predictor and the RLGR adaptation method got better results with specific signals.
Subsurface oceanic data (Z20; Depth of $20^{\circ}C$ isotherm and WWV; Warm Water Volume) from the tropical Pacific Ocean from 1980 to 2004 were utilized to examine upper ocean variations in relation to E1 Nino. Time series analysis using EOF, composite, and cross-correlation methods indicated that there are significant time delays between subsurface oceanic parameters and the Nino3.4 SST. It implied that Z20 and WWV would be more reliable predictors of El Nino events. Based on analyzed results, we also constructed neural network model to predict the Nino3.4 SST from 1996 to 2004. The forecasting skills for the model using WWV were statistically higher than that using the trade wind except for short range forecasting less than 3 months. This model greatly predicted SST than any other previous statistical model, especially at lead times of 5 to 8 months.
This study predicts solar radiation, solar radiation, and solar power generation using hourly weather data such as temperature, precipitation, wind direction, wind speed, humidity, cloudiness, sunshine and solar radiation. I/O pattern in supervised learning is the most important factor in prediction, but it must be determined by repeated experiments because humans have to decide. This study proposed four input and output patterns for solar and sunrise prediction. In addition, we predicted solar power generation using the predicted solar and solar radiation data and power generation data of Youngam solar power plant in Jeollanamdo. As a experiment result, the model 4 showed the best prediction results in the sunshine and solar radiation prediction, and the RMSE of sunshine was 1.5 times and the sunshine RMSE was 3 times less than that of model 1. As a experiment result of solar power generation prediction, the best prediction result was obtained for model 4 as well as sunshine and solar radiation, and the RMSE was reduced by 2.7 times less than that of model 1.
Kim, Yong;Yi, Choong Sung;Kim, Hung Soo;Shim, Myung Pil
Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.759-764
/
2004
본 연구는 Deng(1989)이 제시한 Grey 모형을 이용하여 성진강댐의 월유입량을 예측하였고 그 방법을 제시하였다. Grey 모형은 시계열모형이나 다른 모형에 비해 비교적 적은 수의 자료를 이용하고, 간단할 수식으로 구성되어 있는 장점이 있으나, 적은 수의 자료로 인해 입력자료가 가지는 증감의 경향(trend)으로 오차가 발생하기 쉽다. 그러므로 예측오차를 극복하기 위해서 Fuzzy 시스템을 결합한 Fuzzy-Grey 모형을 구성하였고 Fuzzy 시스템에 필요한 매개변수를 추정하기 위해 최적화기법인 유전자 알고리즘(GA; Genetic Algorithm)을 이용하였다. Grey 모형과 결합된 Fuzzy 시스템은 현재의 입력자료가 가지는 패턴과 가장 유사한 패턴의 과거자료를 이용하여 현재의 입력자료의 예측오차를 추론해내는 기능을 가진다. 오차를 추론하기 위해서 과거 월유입량 자료중 현재 입력 자료와 유사한 패턴을 Grey 상관도를 이용하여 검색하고, 보다 높은 유사성을 가지는 패턴을 선별하고자 노름(norm)을 사용하였고, 유전자 알고리즘의 탐색공간을 제한하였다. 이렇게 구성한 Fuzzy-Grey 모형을 이용하여 전국적인 가뭄년도였던 1992년, 1988년, 2001년에 대해 섬진강댐의 월유입량을 예측하였다. 오차는 1982년, 2001년, 1988년 순으로 비슷한 크기의 오차가 발생하였는데 결과를 분석하여 보면, 급격한 월유입량의 변화가 있었던 경우에 오차가 크게 발생하였으나 가뭄년도에 대해 월유입량의 불확실성이 큼에도 불구하고 비교적 월유입량의 추세를 잘 예측한 것으로 판단된다. 본 연구에서 적용한 Fuzzy-Grey 모형은 적은 수의 자료를 이용하여 예측하고 예측결과를 다시 입력자료로 사용하는 업데이트 방식을 사용하기 때문에 예측결과의 오차가 완전하게 보정되지 않으면 다음 결과에 역시 오차를 주게 되어 오차보정이 상당히 중요하다는 것을 알 수 있었다. 오차를 보다 효과적으로 보정하기 위해서는 퍼지제어에 사용되는 퍼지규칙의 수를 늘리고, 유입량에 직접적인 영향을 주는 강우량과 연계한 2변수의 Fuzzy-Grey 모형을 이용한다면 보다 정확한 유입량 예측이 가능할 것으로 사료된다.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.207-207
/
2019
최근 우리나라는 지역 특성 및 기후변화의 영향으로 인해 수문학적 요소의 변동성이 커지고 수자원의 지속적인 관리에 있어 유출량은 중요한 문제로 여겨지고 있다. 특히 일부 소하천 또는 접경지역과 같은 미계측유역은 수문학적 요소에 대한 자료가 부족하고 수문모형의 초기치 설정과 과거 유출량 자료를 통하여 최적화한 매개변수를 결정해야하므로 장기유출분석이 어렵다. 본 연구의 적용유역으로 미계측유역인 임진강상류 유역에 대한 유출량 추정을 위해 계측 유역의 자료를 활용하여 모형의 매개변수 등을 추정하는 지역화 기법인 다중선형회귀분석과 공간근접분석을 활용하여 유출량을 산정 및 검증하였다. 또한, 확률론적 예측이 가능한 앙상블 기법 적용을 통한 유출량 예측을 하였고, 이를 예측 정확성 평가지표를 통해 효율성 검토를 수행하여 미계측유역의 유출량에 대해 확률론적 예측을 수행하였다. 대표적 지역화 기법의 적용성을 검토한 결과, 계측유역을 통해 다중선형회귀분석과 공간근접분석을 abcd 모형에 적용하였다. 모의유출량을 산정하고 실측 유출량과 비교 분석 결과 모의정확성이 높게 분석되었다. 이와 같은 검증 결과를 토대로 미계측유역의 유출량을 추정하였다. 또한, 지역화 기법을 앙상블 기법에 적용하여 확률론적 유출량 예측의 효율성을 검토하였다. 적용유역과 같은 지류를 포함하고 있는 임진강하류 유역을 대상으로 수행하였다. 검증기간(2013년~2017년) 동안의 월 예측 유출량 앙상블 생성을 위해 과거 강우량와 증발량(1988년~2012년) 자료를 사용하였으며, 지역화 기법을 적용한 abcd 모형을 이용하였다. 예측 유출량의 정확성 평가를 실시하였으며, 정확성이 비교적 높게 분석되었다. 이와 같은 결과를 토대로 미계측유역의 확률론적 유출량을 예측하였다. 따라서, 대표적 지역화 기법을 앙상블 기법에 적용하여 확률론적 유출량을 예측할 경우 보다 정확한 유출량 예측이 가능하다.
KIPS Transactions on Software and Data Engineering
/
v.11
no.7
/
pp.307-314
/
2022
Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.
영상통신에 대한 관심이 다방면에서 증가되고 있고 동영상 압축에 있어서 복원 이미지 개선이나 압축 데이터의 감소에 대한 연구가 활발이 진행되고 있다. 본 논문에서는 움직임 예측 블록에 강한 직선 경계(edge)가 있는 경우 그 경계 주변에 원 이미지와 예측 이미지 간의 움직임 예측 오류가 많다는 점에 착안하여 움직임 예측블록을 개선 할 수 있는 알고리즘을 제안한다. 움직임예측 블록의 화소(pixel)값들을 이용해서 직선 경계의 각도와 움직임 예측 오류를 보상할 값을 구하고 경계위치에 보상함으로써 움직임 예측 오류 블록의 압축데이터가 감소된다. 기존의 동영상 압축 방법에 제안 방법을 첨가한 후 시뮬레이션 한 결과 동일한 PSNR에서 H.263+의 압축 데이터에 비해 평균 약 4% 개선된 압축데이터의 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.