• Title/Summary/Keyword: 견인력

Search Result 261, Processing Time 0.026 seconds

THE EFFECT OF RETRACTIVE FORCE ON JAW GROWTH IN GROWING RABBITS (하악골 후방 견인력이 가토의 악골 성장에 미치는 영향에 관한 실험적 연구)

  • Kim, Jong-Chul;Yang, Kyu-Ho;Lee, Kwang-Sub
    • The korean journal of orthodontics
    • /
    • v.23 no.3 s.42
    • /
    • pp.295-309
    • /
    • 1993
  • The purpose of this study was to investigate the effect of jaw growth in a growing rabbits, when they are subjected to refractive force and after removal of refractive force. The experimental animals were Oryctolagus couniculus, male rabbits of 4 weeks of age. The mandible is retracted with 200gm in force of each side to the posterior and superior direction for 14 hours a day. Then rabbits were used as control group. First experimental group received refractive force for 4 weeks. Second experimental group received for 8 weeks. Third experimental group received for 12 weeks. True lateral films and dorso-ventral films were taken before wearing appliances, 4 weeks, 8 weeks, 12 weeks and 16 weeks after wearing appliance. The changes of rabbits jaw growth were observed radiographically. The findings were as follows : 1. Mandibular refractive force decreased total mandibular length, mandibular condylar length and angular length. 2. Mandibular refractive force increased nasal height, condylar width and angular width. 3. Mandibular refractive force decreased mandibular lenght growth but increased mandibular width growth. 4. There is no phenomena of catch-up growth after refractive force removal.

  • PDF

Traumatic Forequarter Amputation - A Case Report - (외상성 견갑 흉곽간 절단 - 증례 보고 -)

  • Cho, Chul-Hyun;Lee, Kyung-Jae
    • Clinics in Shoulder and Elbow
    • /
    • v.11 no.1
    • /
    • pp.66-69
    • /
    • 2008
  • Traumatic forequarter amputation is an extremely rare and life-threatening injury. It is caused by blunt trauma or tremendous traction force, and the prognosis is very poor because of the involvement of massive associated injury. Traumatic forequarter amputation has been rarely reported in the English language clinical literature, but has never been reported in Korea. We report a case of traumatic forequarter amputation caused by a conveyor belt that was treated with emergency resuscitation and surgery, with an accompanying review of the literature.

A Physical-based Particle Method for Small Scale Feature in Multi-phase Fluid Simulation (다상 유체 시뮬레이션에서 격자 크기 이하의 미세한 특징 표현을 위한 물리기반 입자 기법)

  • Lee, Ho-Young;Hong, Jeong-Mo;Kim, Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.445-450
    • /
    • 2009
  • This paper presents a multi-phase fluid simulation that realistically represents small scale details. We achieve this by creating escaped particles based on physical methods. Escaped particles are the remained particles after correcting levelset. Generation of escaped particles in this paper differs from previous works; this fluid simulation is extended by adding lift force and drag force to positive escaped particles. And negative escaped particles represent droplet or splash effect; when they are merged into the negative levelset value, they affect the nodes' velocity (two-way coupling). This simulation that uses positive and negative escaped particles deals with detailed fluid motions dynamically in small scale.

  • PDF

Visualization of Dynamic Correlations during Cellular Jamming (세포 재밍 과정의 역학적 상관 관계 가시화)

  • Jeong, Hyuntae;Cho, Youngbin;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.38-44
    • /
    • 2018
  • Cellular jamming phenomenon, defined as a kinetic arrest, is a commonly observed event in dense cell aggregates in epithelial tissues. Cells lose their motility when the density of the cell population becomes too high. Yet, not much is known about how the jamming occurs and how it influences individual cells in the population. In this study, we investigated the mechanisms during the formation of the jammed state by visualizing various dynamic components such as velocity, traction, and intercellular stress. The visualized properties exhibited interrelated features in similar time domains that can be categorized into specific stages, namely migrating, transitional and steady state. During the migrating stage, cells generated spatially correlated tractions and migrations at the collective migration step and lost these properties becoming a transitional stage. These stepwise analyses presented correlative components which are expected to adjust for explaining the detailed mechanisms of cellular jamming.

The Study on Train Electric Consumption Analysis According to Operation Speed (운행속도에 따른 열차소비전력 분석에 관한 연구)

  • Lee, Kang-Mi;Lee, Jae-Ho;Kim, Yong-Gyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.182-185
    • /
    • 2011
  • 본 논문에서는 국내 고속철도 차량 즉, 경부고속철도를 운행하는 KTX, KTX산천 그리고 현재 개발중인 HEMU400x을 대상으로 운행속도 및 운행패턴에 따른 열차 소비전력을 분석하였다. 이를 위해, 선로조건을 고려한 차량의 운전속도 조건과 운행시간,소비전력 등을 예측하기 위한 TPS(Train Performance Simulation)프로그램을 이용하였다. 열차운행 시뮬레이션을 수행하기 위해선 차량, 선로, 속도의 기본 데이터를 필요로 한다. 차량에 대한 데이터는 차량의 최고속도, 제동성능, 견인력 등의 기본 성능과 열차편성에 따른 중량, 길이, 동력차량형식, 열차주행저항등에 대한 제원을 요한다. 선로데이터는 운행시간 예측을 대상으로 하는 선로에 대한 거리별 구배 및 선형, 정거장 위치 및 정차시간에 대한 데이터이다. 속도조건은 구배 및 곡선에 대한 선로제한속도로, 선로데이터와 연계하여 각 선로위치별 차량의 제한속도로 이용된다. 본 논문에서는 경부고속철도 구간에서 운행하는 고속차량 3가지를 대상으로 증속에 따른 전력소모량을 비교하였다.

  • PDF

Effect of Metal Removal and Traction Force on Contact Fatigue Life (견인력과 접촉표면 제거가 접촉피로수명에 미치는 영향)

  • Seo Jung-Won;Hur Hun-Mu;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1384-1391
    • /
    • 2005
  • Damage often occurs on the surface of railway wheels due to wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue lift by the metal removal of the contact surface were investigated by many researchers, but they have not considered initial residual stress and traction force. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. The traction force and residual stress are operated on wheels of locomotive and electric motor vehicle. In this study, the effect of metal removal depth on the contact fatigue life for a railway wheel has been evaluated by applying lolling contact fatigue test. The effect of the traction force and metal removal on the contact fatigue life has been estimated by finite element analysis. It has been found that the initial residual stress determines the amount of metal removal depth if the traction coefficient is less than 0.15. If the traction coefficient is greater than 0.2, however, the amount of metal removal depth is independent on the intial residual stress.

Traction Control of Mobile Robot Based on Slippage Detection by Angular Acceleration Change (각가속도 변화에 의해 탐지된 슬립에 기반한 주행로봇의 견인력 제어)

  • Choi, Hyun-Do;Woo, Chun-Kyu;Kang, Hyun-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.184-191
    • /
    • 2009
  • The common requirements of rough terrain mobile robots are long-term operation and high mobility in rough terrain to perform difficult tasks. In rough terrain, excessive wheel slip could cause an increase in the amount of dissipated energy at the contact point between the wheel and ground or, even more seriously, the robot could lose all mobility and become trapped. This paper proposes a traction control algorithm that can be independently implemented to each wheel without requiring extra sensors and devices compared with standard velocity control methods. The proposed traction algorithm is analogous to the stick-slip friction mechanism. The algorithm estimates the slippage of wheels by angular acceleration change, and controls the increase or decrease state of torque applied to wheels Simulations are performed to validate the algorithm. The proposed traction control algorithm yielded a 65.4% reduction of total slip distance and 70.6% reduction of power consumption compared with the standard velocity control method.

Analysis of Soil-Lug Interaction Characteristics (토양-러그 상호작용의 특성 해석)

  • ;T. Kishimoto;;大友功一(K. ohotomo)
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.179-186
    • /
    • 2000
  • Interactions between wheel lug surfaces and soil were analyzed through wheel motion. In this paper, lug surfaces such as trailing and leading lug sides and a lug face were analyzed and reported. The interactions between the surfaces and soil were expressed as the horizontal and vertical directions of resultant forces acting on the surfaces. There analysis indicated qualitatively that (1) the trailing lug side is mainly related to produce motion resistance and reaction to dynamic load, (2) the lug face is related to produce not only the motion resistance, the reaction to the dynamic load but also the traction and (3) the leading lug side is mainly related to produce the traction and the reaction to the dynamic load. Experiments were conducted to prove the results of the motion analysis. Normal and tangential forces acting on the surfaces were measured, and the traction, the motion resistance and the reaction to the dynamic load were calculated with wheel rotational and lug design angles. The experiments proved that the results of wheel motion analyses above mentioned as (1), (2) and obtained from the analysis were correct.

  • PDF

Oscillatory behavior of microglial cells (미세아교세포의 진동 거동의 연구)

  • Park, Eunyoung;Cho, Youngbin;Ko, Ung Hyun;Park, Jin-Sung;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2021
  • Cells regulate their shapes and motility by sensing the cues from the internal and external microenvironment. Under different circumstances, microglia, the brain resident immune cells, undergo dynamic phenotypic changes, one of which is a remarkable periodic oscillatory migration in vitro. However, very little is known about the kinematic and dynamic perspectives of this oscillatory behavior. In this study, we tracked the changes in cell morphology and nuclear displacement, and visualized the forces using traction force microscopy (TFM). By correlation analyses, we confirmed that the lamellipodia formation preceded the nuclear translocation. Moreover, traction, developed following lamellipodia formation, was found to be localized and fluctuated at two ends of the oscillating cells. Taken together, our results imply that oscillatory microglial cells feature a viscoelastic migration, which will contribute to the field of cell mechanics.

Visualization of the physical characteristics of collective myoblast migration upon skeletal muscle injury and regeneration environment (골격근 손상 및 재생 환경에서의 근육 세포 군집 이동의 물리적 특성 가시화)

  • Kwon, Tae Yoon;Jeong, Hyuntae;Cho, Youngbin;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • Skeletal muscle tissues feature cellular heterogeneity, including differentiated myofibers, myoblasts, and satellite cells. Thanks to the presence of undifferentiated myoblasts and satellite cells, skeletal muscle tissues can self-regenerate after injury. In skeletal muscle regeneration, the collective motions among these cell types must play a significant role, but little is known about the dynamic collective behavior during the regeneration. In this study, we constructed in vitro platform to visualize the migration behavior of skeletal muscle cells in specific conditions that mimic the biochemical environment of injured skeletal muscles. We then visualized the spatiotemporal distribution of stresses arising from the differential collectiveness in the cellular clusters under different conditions. From these analyses, we identified that the heterogeneous population of muscle cells exhibited distinct collective migration patterns in the injury-mimicking condition, suggesting selective activation of a specific cell type by the biochemical cues from the injured skeletal muscles.