• Title/Summary/Keyword: 격자 변형

검색결과 340건 처리시간 0.087초

superplastic deformation conditions of $YBa_{2}Cu_{3}O_{7-x}$ superconducting materials ($YBa_{2}Cu_{3}O_{7-x}$ 계 초전도체의 초소성 변형조건)

  • Kim, Byeong-Cheol;Jo, Beom-Rae;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • 제5권3호
    • /
    • pp.371-378
    • /
    • 1995
  • YBCO 산화물 초전도체의 초소성 변형에 대한 최적 변형조건을 파악하고자 80$0^{\circ}C$~93$0^{\circ}C$의 온도범위에서 1.0 $\times$ $10^{-3}$s^{-1}$!1.0 $\times$ $10^{-7}$s^{-1}$의 초기변형속도로 압축시험을 수행하였다. 변형속도 민감지수는 m=0.50 $\pm$ 0.1로 나타났다. 이는 결정립계 미끄러지\ulcornerㄹ 주 변형기구로 하는 초소성임을 의미한다. 결정립크기에 따른 유동응력과의 관계는 $\sigma$\propto$d^{1.8 $\pm$ 0.3}$의 지수함수식을 이루고 있으며 Nabarro-Hering 크\ulcorner과 상응하는 격자확산이 확산경로임을 보였다. 초소성 변형에 대한 활성화에너지는 Q=571 $\pm$ 30 kJ/mole이었다. 본 실험온도 구간에서 압축 변형시 변형속도, 변형응력 및 결정립크기에 따른 고온 변형거동 관계식은 $\varepsilon$=A$\sigma$^{2.00 $\pm$ 0.04 - 1.8 $\pm$ 0.3}$ exp(-571 $\pm$ 30kJ/RT)와 같이 유도 되었다. 본 실험조건에서 최적 초소성 변형조건은 86$0^{\circ}C$ 부금, 초기변형속도 ~1.0 $\times$ $10^{-4}$S^{-1}$이었다.

  • PDF

A Study on the Shock Compaction of Ceramic Powders using Explosive (폭약을 이용한 세라믹분말의 충격고화에 관한 연구)

  • Kim, Young-Kook;Kim, See-Jo;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • 제22권2호
    • /
    • pp.157-161
    • /
    • 2012
  • ZnO-98% and $Ga_2O_3$-2% powder were consolidated by shock compaction technique, which uses a high performance explosive. The microstructural and electrical characteristics of $ZnOGa_2O_3$ compact with density of 97% and hardness of 220~250 $H_v$ were investigated using SEM (Scanning Electron Microscope) and X-ray diffraction analysis, respectively. In the microstructures of the compact, there were no visible cracks at most of the surface areas, and interparticle bonding between powder particles was confirmed. The broadened peaks were detected due to deformation of crystallited size and high electric resistances were confirmed due to increased grains because of shock energy with a high pressure and high velocity.

Measurements of Thermal Gradient and Thermal Strain of Mortar Specimens Using Fiber Bragg Grating Sensor (광섬유 격자 센서를 이용한 모르타르시편의 온도구배 및 열 변형 측정)

  • Rhim, Hong-Chul;Lee, Eun-Joo;Chun, Heung-Jae;Park, Dong-Nyuck
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제7권3호
    • /
    • pp.133-138
    • /
    • 2003
  • As concrete structures are heated, thermal strain can be developed. Because of the boundary conditions, the thermal stress may be arisen. Thermal strain and temperature were measured simultaneously using an optical fiber sensor. Fiber Bragg Grating Sensor(FBG sensor) was used in the measurement. Because it can measure the strains more than two points with one line, it was possible to measure both thermal strain and temperature with one line. To compare data measured by FBG sensor, strain and temperature were measured using strain gauge and thermocouple. The FBG sensor could measure the strain under the temperature greater than $60^{\circ}C$ but strain gauge couldn't. Both the FBG temperature sensor and thermocouple could measure the temperature and the results are related each other linearly.

Generation Method of the Rectangular Grid Information for Finite Difference Model (유한차분모형을 위한 직사각형 격자정보 생성기법)

  • 정신택;조범준;김정대
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제15권3호
    • /
    • pp.190-195
    • /
    • 2003
  • For many coastal problems, such as wave transformation, tidal circulation, sediment transports and diffusion phenomena, we resort to numerical techniques. The representative numerical techniques are the method of finite differences and finite elements. The approximate algebraic equations, referred to as finite difference equations(FDEs), are subsequently solved at discrete grid points within the domain of interests. Therefore, a set of grid points within the domain, as well as the boundaries of the domain, must be specified. The generation of grids for FDEs, with uniform spacing, is very simple compared to that of finite elements. However, within a very complex domain, there are few grid generation tools we can use conveniently. Unfortunately, most of the commercial grid generation programs are developed only for finite element method. In this paper, grid generation method using digitizer, with uniform rectangular spacing, are introduced in detail. Didger and Surfer programs by Golden Software are necessary to produce comparatively accurate and simple depth data.

Three-Dimensional Shape Estimation of Beam Structure Using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 보 구조물의 3차원 형상 추정)

  • Lee, Jin-Hyuk;Kim, Heon-Young;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제39권3호
    • /
    • pp.241-247
    • /
    • 2015
  • Deflection and deformation occur easily in structures with long length, such as bridges and pipelines. Shape monitoring is required for ensuring their structural health. A fiber Bragg grating (FBG) sensor can be used for monitoring a large-scale structure because of its advantage of multiplexing. In this study, FBG sensors were used for monitoring a composite beam structure, and its strains were measured at multiple points. Thereafter, a shape estimation technique based on the strains was studied. Particularly, a three-dimensional shape estimation technique was proposed for accurate structural health monitoring. A simple experiment was conducted to verify the performance of the shape estimation technique. The result revealed that the estimated shape of the composite beam structure was in agreement with the actual shape obtained after the deformation of the specimen. Additionally, the deflection at a specific point was verified by comparing the estimated and actual deformations measured using a micrometer.

Measurement of compressive and tensile strain in concrete structure with FBG sensor fixture (광섬유격자센서의 콘크리트구조물에의 고정과 압축 및 인장 변형의 측정)

  • Kim, Ki-Soo;Kim, Young-Jin;Moon, Dae-Jung;Kim, Seong-Woon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.149-152
    • /
    • 2008
  • FBG sensor system is applied to the concrete lining structure in Taegu subway. Near the structure, the power cable tunnel construction started. We wanted to measure the deformation of the structure due to the construction by the FBG sensor. The applied sensor has the gauge length of 1 meter to overcome the inhomogeneity of the concrete material with enough length. In order to fix tightly to the structure, the partially stripped parts of the sensor glued to the package and slip phenomenon between fiber and acrylate jacket was prevented. Prestrain of the sensor was imposed by controlling the two fixed points with bolts and nuts in order to measure compressive strain as well as tensile strain. The behavior of subway lining structure could be monitored very well

  • PDF

Feasibility Study on Packaged FBG Sensors for Debonding Monitoring of Composite Wind Turbine Blade (풍력발전기 복합재 블레이드의 접착 분리 모니터링을 위한 패키징 광섬유 브래그 격자 센서 탐촉자의 사용성 검토)

  • Kwon, Il-Bum;Choi, Ki-Sun;Kim, Geun-Jin;Kim, Dong-Jin;Huh, Yong-Hak;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제31권4호
    • /
    • pp.382-390
    • /
    • 2011
  • Smart sensors embedable in composite wind turbine blades have been required to be researched for monitoring the health status of large wind turbine blades during real-time operation. In this research, the feasibility of packaged FBG sensor probes was studied through the experiments of composite blade trailing edge specimens in order to detect cracking and debonding damages. The instants of cracking and debonding generated in the shear web were confirmed by rapid changes of the wavelength shifts from the bare FBG sensor probes. Packaged FBG sensor probes were proposed to remove the fragile property of bare FBG sensor probes attached on composite wind blade specimens. Strain and temperature sensitivity of fabricated probes installed on the skin of blade specimen were almost equal to those of a bare FBG sensor. Strain sensitivity was measured to be ${\mu}{\varepsilon}$/pm in a strain range from to 0 to 600 ${\mu}{\varepsilon}$, and the calculated temperature sensitivity was to be 48 pm/$^{\circ}C$ in the heating test up to 80 degree.

Experimental Evaluation of Compressive Characteristics of Cementitious Composites Reinforced by Auxetic Mesh (음의 포아송비 거동 격자체로 보강한 시멘트 복합체의 압축특성 실험평가)

  • Kim, Won-Woo;Lee, Jang-Hwa;Moon, Jae-Heum
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제5권2호
    • /
    • pp.198-203
    • /
    • 2017
  • This study observed the effects of auxetic mesh reinforcement in concrete on the mechanical characteristics under compression. Series of double arrow type 2-D auxetic mesh were manufactured and embedded into concrete specimens. Compression tests were performed and results showed that the application of auxetic mesh as concrete reinforcement can restrain the deformation of concrete resulting in the enhancement of stiffness of composites.

A Study on the Measurement and Application of Long Gauge fiber Brags Grating Sensors (긴 게이지 길이 광섬유 격자 센서의 측정과 응용)

  • Kim, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제25권5호
    • /
    • pp.343-349
    • /
    • 2005
  • In this research, the fiber Bragg grating sensors with long gauge for displacement measurement in the long distance is developed and tested. The sensors show an accuracy and a capability for displacement measurement oin long distance. Monitoring using static logger of system of FBG sensor with strained optical fiber shows the capability of measurement in the harsh environment such as strong wind. Measurement of long distance displacement by optical fiber sensor if use $250{\mu}m$ optical fiber and impose some strong pre-tension shows possibility in monitoring of nuclear containment structure.