• Title/Summary/Keyword: 격자 구조체

Search Result 274, Processing Time 0.029 seconds

Effect on the Orientation of Poly(trimethylene terephthalate) Fibers in Drawing Conditions(I) (연신조건이 PTT 섬유의 배향에 미치는 영향(I))

  • 강석진;김경효;조현혹
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.64-67
    • /
    • 2003
  • Poly(trimethylene terephthalate)(이하 PTT)는 1941년 Caligo Printing Ink사의 Whinfield와 Dickson에 의해 중합 방법이 보고[1]된 이후 상업화를 위한 많은 학문적 연구가 이어져왔다. 그럼에도 불구하고 아직 PET에 비하여 기초 연구가 미비하며 상업적으로 사용하기에는 많은 불안정한 요소들을 가지고 있다. 앞선 연구자들이 밝힌바와 같이 PTT의 결정구조는 2개의 단량체가 1개의 unit cell을 이루면서 결정격자 내에서 O-C $H_2$-C $H_2$-C $H_2$-O가 trans-gauche-gauche-trans형의 coiled spring처럼 형성되어 좋은 elastic recovery와 뛰어난 신축성, 염색성 등 우수한 물성을 가지며 전반적인 성질은 PET와 Nylon의 중간성질을 뛰고 있지만 [2,3] 유리전이온도 (Tg : dir 4$0^{\circ}C$)와 냉결정화오도 ( $T_{ c cold}$ : dir 55$^{\circ}C$)사이의 차이가 15$^{\circ}C$ 정도이므로 섬유상에 많은 경시변화가 일으켜 구조적 불안정성을 가지게 한다 [4]. (중략)

  • PDF

Optical Energy Gaps of $Cd_{1-x}Co_xIn_2Se_4$ Single Crystals ($Cd_{1-x}Co_xIn_2Se_4$단결정의 광학적 Energy Gaps)

  • 최서휴
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.2
    • /
    • pp.239-246
    • /
    • 1994
  • Cd1-xCoxIn2Se4($\chi$=0.000, 0.001, 0.005, 0.10, 0.50) 단결정을 수직 Bridgman 방법으로 성장시키고 성장된 단결정의 조성 및 결정구조를 조사하고 광학적 특성을 연구하였다. 성장된 단결정은 pesudocubic 구조이고 격자상수는 조성$\chi$가 증가함에 따라 약간씩 감소하였다. 기초 흡수단 영역에서의 광흡수 spectra 측정에서 이 단결정들은 간접전이 및 직접전이 및 직접전이 energy gap을 갖고 있으며 이들 energy gap의 조성의존성은 조성이 $\chi$=0.00에서 $\chi$=0.016까지는 기울기가 같고 $\chi$=0.016에서 기울 기가 변화되어서 $\chi$=0.016에서 $\chi$=0.50까지는 같은 기울기를 갖고 있다. 이러한 현상은 $\chi$=0.016에서부터 CdIn2Se4 내에 cobalt를 포함한 새로운 물질이 형성되고 이 물질과 a-CdIn2Se4 사이에 고체고용체를 형 성하기 때문이다.

  • PDF

Free Vibration Analysis of the Partial Fuel Assembly Under Water Using Substructure Method (부분구조법을 이용한 부분핵연료 집합체의 수중 자유진동해석)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Jae-Yong;Rhee, Hui-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.246-249
    • /
    • 2006
  • Finite element vibration analysis of the trial 5x5 partial fuel assembly in the still water was performed using the substructure method. ANSYS software was used as a finite element modeling and modal analysis tool. The calculated natural frequencies of the partial fuel assembly were more consistent with the experimental results for the identical test model compared to the much larger solid model. This modeling technique can be utilized for the fuel assembly dynamic behavior analysis under normal operation, seismic and loss-of-coolant-accident analysis.

  • PDF

Ultrasonic Wave Propagation Analysis for Damage Detection in Heterogeneous Concrete Materials (콘크리트 내부결함 탐지를 위한 초음파 전파 해석)

  • Jung, Hwee Kwon;Rhee, Inkyu;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.225-235
    • /
    • 2020
  • Ultrasonic investigation of damage detection has been widely used for non-destructive testing of various concrete structures. This study focuses on damage detection analysis with the aid of wave propagation in two-phase composite concrete with aggregate (inclusion) and mortar (matrix). To fabricate a realistic simulation model containing a variety of irregular aggregate shapes, the mesh generation technique using an image processing technique was proposed. Initially, the domains and boundaries of the aggregates were extracted from the digital image of a typical concrete cut-section. This enables two different domains: aggregates and mortar in heterogeneous concrete sections, and applied the grids onto these domains to discretize the model. Subsequently, finite element meshes are generated in terms of spatial and temporal requirements of the model size. For improved analysis results, all meshes are designed to be quadrilateral type, and an additional process is conducted to improve the mesh quality. With this simulation model, wave propagation analyses were conducted with a central frequency of 75 kHz of the Mexican hat incident wave. Several void damages, such as needle-shaped cracks and void-shaped holes, were artificially introduced in the model. Finally, various formats of internal damage were detected by implementing energy mapping based signal processing.

Study on Structural Stability Analysis of Excavation Stage Considering Excavation Process and Supporting Materials in Room-and-Pillar Underground Space (격자형 지하공간에서 굴착 공정과 지보재를 고려한 굴착 단계별 구조 안정성 해석 연구)

  • Soon-Wook, Choi;Soo-Ho, Chang;Tae-Ho, Kang;Chulho, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2022
  • The room-and-pillar method or grid-type underground space is a method of forming a space by excavating the excavation part at regular intervals so that it is orthogonal and using natural rock mass as a structure. Such excavation may appear different in size from the excavation stage where the maximum displacement occurs depending on the excavation direction and sequence. In this study, considering the installation of support materials such as shotcrete and rock bolts for the optimal design of the excavation process, the safety and constructability of the design and construction of the grid-type underground space under specific ground conditions were analytically reviewed. The ground conditions were set using an numerical method, and the stress at pillar and displacement at center of room were considered for each excavation stage and construction type under a constant surcharge. The height of the space was 8m, which was set higher than the size of a general office, and was reviewed in consideration of equipment and plant facilities. In addition, the degree of displacement control according to the installation of support materials was reviewed in consideration of shotcrete and rock bolts.

Thermotropic Liquid Crystalline Behavior of Penta-O-4-{4'-(cyanophenylazo)phenoxy}alkyl-D-glucopyranoses (펜타-O-4-{4'-(시아노페닐아조)펜옥시}알킬-D-글루코피라노오스들의 열방성 액정 거동)

  • Jeong, Seung Yong;Kim, In Soo;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.603-611
    • /
    • 2009
  • Thermotropic liquid crystalline behavior of a homologous series of penta-O-4-{4'-(cyanophenylazo)phenoxy}alkyl-D-glucopyranoses(CAGETn, n = 2~10, the number of methylene units in the spacer) has been investigated. The CAGETn with n of 2 and 7 exhibited enantiotropic nematic phases whereas other derivatives showed monotropic nematic phases. This is the first report of glucose derivatives that form thermotropic nematic phases. The isotropic-nematic transition temperatures ($T_{iNS}$) of CAGETns and their entropy variation at $T_{iN}$ showed the odd-even effect as a function of n. This behavior was rationalized in terms of the change in the average shape of the side chains as the parity of the spacer is varied. This rationalization also accounts for the observed variation of nematic-crystalline phase transition temperatures ($T_{NkS}$) and associoated entropy change at $T_{Nk}$. The entropy change at $T_{iN}$ or $T_{Nk}$ reaches a mininum at n = 3, before it increases again for n = 4. This may be attributed to the difference in the arrangement of the side groups. The mesophase properties of CAGETns were entirely different from those reported for partially or fully alkylated glucopyranoses. This result suggests that the degree of substitution and chemical structure of the substituents play an important role in the formation of the mesophase structures in the liquid crystals.

Analysis of H-polarized Electromagnetic Scattering by a Conductive Strip Grating Between a Grounded Double Dielectric Layer Using FGMM (FGMM을 이용한 접지된 2중 유전체층 사이의 완전도체띠 격자구조에 의한 H-분극 전자파 산란 해석)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.83-88
    • /
    • 2020
  • In this paper, H-polarized electromagnetic scattering problems by a conductive strip grating between a grounded double dielectric layer are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is applied to analysis of the conductive strip. The numerical results for normalized reflected power are analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of the grounded double dielectric layers, and incident angles. Generally, as the value of the dielectric constant and dielectric thickness of a grounded double dielectric layer increases, the reflected power increased. And as dielectric thickness of a grounded double dielectric layer increases, the current density induced in the strip center increases. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers using the PMM(Point Matching Method).

Solution of TE Scattering by a Perfectly Conducting Strip Grating Over the Grounded Two Dielectric Layers Applying Fourier-Galerkin Moment Method (Fourier-Galerkin Moment Method를 이용한 접지된 2개 유전체층 위의 완전도체띠 격자구조에 의한 TE 산란의 해)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.635-640
    • /
    • 2012
  • In this paper, The TE (Transverse Electric) scattering problems by a perfectly conducting strip grating over a grounded two dielectric layers are analyzed by applying the conductive boundary condition and the FGMM (Fourier-Galerkin Moment Method) known as a numerical procedure, then the induced surface current density is expanded in a series of the multiplication of the unknown coefficient and the exponential function as a simple function. Generally, the reflected power gets increased according as the relative permittivity ${\epsilon}_{r2}$ and the thickness of dielectric layer $t_2$ of the region-2 in the presented structure gets increased, respectively. The sharp variations of the reflected power are due to resonance effects were previously called wood's anomaly, the numerical results show in good agreement with those of the existing papers.

Numerical heat transfer analysis methodology for multiple materials with different heat transfer coefficient in unstructured grid for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 서로 다른 열전도율을 갖는 복합재질 3차원 구조의 비정렬 격자에 대한 전산해석 방법)

  • Lee, Juhee;Jang, Jinwoo;Lee, Hyeonkyun;Lee, Youngjun;Lee, Kyusung
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: Heat transfers phenomena are described by the second order partial differential equation and its boundary conditions. In a three-dimensional structure of a building, the heat transfer phenomena generally include more than one material, and thus, become complicate. The analytic solutions are useful to understand heat transfer phenomena, but they can hardly be applied in engineering or design problems. Engineers and designers have generally been forced to use numerical methods providing reliable results. Finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains. Method: To obtain an numerical solution, a discretization method, which approximates the differential equations, and the interpolation methods for temperature and heat flux between two or more materials are required. The discretization methods are applied to small domains in space and time, and these numerical solutions form the descretized equations provide approximated solutions in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resources are required. The balance between the accuracy and difficulty of the numerical methods is critical for the success of the numerical analysis. A simple and easy interpolation methods among multiple materials are developed. The linear equations are solved with the BiCGSTAB being a effective matrix solver. Result: This study provides an overview of discretization methods, boundary interface, and matrix solver for the 3-dimensional numerical heat transfer including two materials.

A Study on H-polarized Electromagnetic Scattering by a Resistive Strip Grating Between a Grounded Double Dielectric Layer (접지된 2중 유전체층 사이의 저항띠 격자구조에 의한 H-polarized 전자파 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, thr H-polarized scattering problems by a resistive strip grating in a grounded double dielectric layer are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. The %error of the convergence of the reflected power according to the relative permittivity of the dielectric layer and the size of the number of rows in the square matrix was compared, as the size of the number of rows in the square matrix increased, the accuracy of the reflected power increased. As the resistivity of the resistive strip decreased, the thickness of the dielectric layers decreased, and the relative permittivity of the dielectric layers increased, the reflected power increased. The numerical results for the presented structure of this paper having a grounded double dielectric layer are shown in good agreement compared to those of the existing papers.