• Title/Summary/Keyword: 겔 크로마토그래피

Search Result 107, Processing Time 0.027 seconds

Isolation of Mutant Strains from Keratinase Producing Bacillus subtilis SMMJ-2 and Comparision of Their Enzymatic Properties (Keratinase 생산균 Bacillus subtilis SMMJ-2의 변이주 분리와 효소학적 특성 비교)

  • Ko, Hee-Sun;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • Keratinase is widely used in certain industrial applications. The present study sought to improve the culture conditions of Bacillus subtilis SMMJ-2 to facilitate mass production of keratinase. Strain SMMJ-2 was irradiated by ultraviolet light and the resulting isolates were tested for keratinase activity. Isolates displaying elevated keratinase activity were selected and used to determine the optimum temperature (24, 30, 37, 45, $55^{\circ}C$) for bacterial keratinase production during a 4 day incubation period. The highest enzyme activity (55 units/mL/min), from a Bacillus subtilis SMMJ-2 mutant (mutant No. 2) was demonstrated following incubation at $30^{\circ}C$. The effects of carbon and nitrogen sources on keratinase production were confirmed by measuring the enzyme activity from the culture broth of the mutant strain cultured in various media containing different carbon source and nitrogen sources during a 4 day period. The optimal medium composition for producing keratinase consisted of 1% glucose, 0.7% $K_2HPO_4$, 0.2% $K_2HPO_4$, and 1.2% soybean meal. Optimal initial pH and temperature for producing keratinase were 7.0 and $30^{\circ}C$, respectively. Keratinases produced by B. subtilis SMMJ-2 and the mutant No. 2 were purified from the culture broth which used soybean meal as a nitrogen source. Membrane ultrafiltration, DEAE-sephacel ion exchange and Sephadex G-100 gel chromatography were used to purify the enzymes. The purified keratinases from both B. subtilis SMMJ-2 and the mutant No. 2 showed single bands and their molecular weights were estimated as 28 kDa and 42 kDa, respectively on SDS-polyacrylamide gel electrophoresis.

The Properties of Amylose of Cow Pea Starch (동부 전분의 아밀로오스 특성)

  • Kweon, Mee-Ra;Ahn, Seung-Yo
    • Applied Biological Chemistry
    • /
    • v.33 no.1
    • /
    • pp.39-42
    • /
    • 1990
  • The properties of amylose of cow pea starch were investigated. Amylose content of cow pea was 25.1 % and iodine binding capacity was 20.2 %. The ${\beta}-amylolysis$ limit of the amylose was 82.3%. The limiting viscosity number of the amylose fraction was 204 ml/g and the corresponding average degree of polymerization was 1,510 glucose units. The percent distribution of molecular weight of the amylose by gel chromatography was $1{\times}10^4$(0.7 %), $1{\times}10^4{\sim}4{\times}10^4$(4.1 %), $4{\times}10^4{\sim}5{\times}10^5$(44.6 %), $5{\times}10^5{\sim}4{\times}10^7$(49.6 % ).

  • PDF

The Effect of Cellulase Treatment on the Physicochemical Properties of Rice and the Texture of Cooked Rice (Cellulase 처리가 쌀의 이화학적 특성 및 밥의 텍스쳐 특성에 미치는 영향)

  • Kim, Young-Kyung;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.720-729
    • /
    • 1996
  • Effect of the cellulase treatment on the physicochemical properties of three varieties of rice (chucheongbyeo, chosengtongilbyeo and IR 36) and the texture of cooked rice were investigated. The swelling power and solubility of the rice flours were increased and amylographic viscosities, especially cold viscosities were decreased by cellulase treatment in all varieties. Gel chromatography of soluble carbohydrates from cellulase-treated rice flours on sepharose 2B-CL showed a singificant increase of low molecular weight $(10^{4})$ fraction which might be produced upon hydrolysis in endosperm cell wall constituents. The hardness of cooked rices prepared from cellulose-treated rices significantly decreased.

  • PDF

Molecular Structural Properties of Legume Starches (두류 전분의 분자구조적 특성)

  • Kweon, Mee-Ra;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.264-269
    • /
    • 1993
  • Molecular structural properties of legume starches were investigated. In intrinsic viscosity and degree of Polymerization of amylose and amylopectins, cow pea and mung bean were high, but kidney bean was low. Low molecular weight fractions for kidney bean starch were much eluted by gel chromatography. In the elution profiles of their amylose by Sepharose 2B-CL, molecular weight of kidney bean amylose was smaller than that of other amylose Molecular weights of cow pea and mung bean amyloses were large, but that of kidney bean amylose was small and red bean amylose was medium. The elution profiles by Sephadex G-50 after debranching amylopectins with pullulanase showed similar patterns.

  • PDF

Studies on Inulase from Jerusalem artichoke (돼지감자중의 Inulin 분해효소에 관한 연구)

  • Jhon, Deok-Young;Kim, Myung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.3
    • /
    • pp.205-210
    • /
    • 1988
  • The inulase(EC 3.2.1.7) was isolated from the tuber of Jerusalem artichoke by conventional purification methods including ammonium sulfate fractionation, Sephadex G-100 filtration, and DEAE-cellulose column chromatography. The enzyme was purified 6,470 fold with 42% recovery, The enzyme was consisted of a polypeptide of Mw 57,000. The optimum temperature and the optimum pH for the enzyme action was $33^{\circ}C$ and pH 5.0, respectively. The enzyme was highly specific for inulin as a substrate. The km for inulin was 20mM. The inulase was not a metalloenzyme and was inhibited completely by 10mM $Mg^{2+},Ca^{2+},\;or\;Hg^{2+}$.

  • PDF

Hot- Water Soluble and Insoluble Materials of Waxy Black Rice Starch (찰흑미(상해항혈나) 전분의 열수가용성 및 불용성 물질)

  • Choi, Gyeong-Cheol;Na, Hwan-Sik;Oh, Geum-Soon;Kim, Sung-Kon;Kim, Kwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.219-222
    • /
    • 2005
  • Some structural characteristics of hot-water soluble and insoluble starches (waxy black rice starch) were investigated. The hot-water soluble material content of waxy black rice starch was higher (16.6%) than that (13.4%) of Shinsunchalbyeo starch heated at 98$^{\circ}C$ for 8 min. The Amax and absorbance at 625 nm for hot-water soluble and insoluble material of waxy black rice starch were lower than those of Shinsunchalbyeo. Elution patterns of hot water soluble and insoluble materials by gel permeation chromatography (Sepharose CL-2B) were similar in both samples.

Partial Purification of OsCPK11 from Rice Seedlings and Its Biochemical Characterization (벼 유식물에서 OsCPK11의 부분 정제 및 생화학적 특성 규명)

  • Shin, Jae-Hwa;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Calcium is one of the important secondary signaling molecules in plant cells. Calcium-dependent protein kinases (CDPK)-the sensor proteins of Ca2+ and phosphorylating enzymes-are the most abundant serine/threonine kinases in plant cells. They convert and transmit signals in response to various stimuli, resulting in specific responses in plants. In rice, 31 CDPK gene families have been identified, which are mainly involved in plant growth and development and are known to play roles in response to various stress conditions. However, little is known about the biochemical characteristics of CDPK proteins. In this study, OsCPK11-a CDPK in rice-was partially purified, and its biochemical characteristics were found. Partially purified OsCPK11 from rice seedlings was obtained by three-step column chromatography that involved anion exchange chromatography consisting of DEAE, hydrophobic interaction chromatography consisting of phenyl-Sepharose, and gel filtration chromatography consisting of Sephacryl-200HR. An in vitro kinase assay using partially purified OsCPK11 was also performed. This partially purified OsCPK11 had a molecular weight of 54 kDa and showed a strong hydrophobic interaction with the hydrophobic resin. In vitro kinase assay showed that the OsCPK11 also had Ca2+-dependent autophosphorylation activity. The OsCPK11 phosphorylated histone III-S, and the optimum pH for its kinase activity was found to be 7.5~8.0. The native OsCPK11 shared several biochemical characteristics with recombinant OsCPK11 studied previously, and both had Ca2+-dependent autophosphorylation activity and favored histone III-S as a substrate for kinase activity, which also had a Ca2+-dependence.

Purification and Characterization of Polyphenol Oxidase from Burdock (Arctium lappa L.) (우엉(Arctium lappa L.) 뿌리 Polyphenol Oxidase의 부분정제 및 특성)

  • Lim, Jeong-Ho;Jeong, Moon-Cheol;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.12 no.5
    • /
    • pp.489-495
    • /
    • 2005
  • Polyphenol oxidase (PPO) from Burdock (Arctium lappa L.) was purified and characterized. Purification of polyphenol oxidase was achieved by ammonium sulfate precipitation, Phenyl-sepharose CL-4B hydrophobic chromatography and Sephadex G-100 gel filtration chromatography. The molecular mass of the purified PPO was estimated to be 30 kDa by SDS polyacrylamide gel electrophoresis. In a substrate specificity, maximum activity was achieved with chlorogenic acid, followed by catechol and catechin. Whereas, there was low activity with hydroquinic acid, resorcinol or tyrosine. The optimum pH and temperature for enzyme activity were 7.0 and 35$\circC$ with catechol, respectively. The enzyme was most stable at pH 7.0 while unstable at acidic and alkaline pH. The enzyme was stable when heated to 40$\circC$. But heating at 50$\circC$ for more than 30 min caused 50% loss of activity. Ascorbic acid, L-cystein and $Cu^{2+}$ inhibited the activity of pholyphenol oxidase.

Purification of Extracellular Enzyme Produced by Vibrio sp. AL-145 (Vibrio sp. AL-145가 생산하는 균체외 효소의 정제 (I))

  • 주동식;이응호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.234-239
    • /
    • 1993
  • The alginate degrading bacteria have been screened from the marine environment. Sodium alginate and NaCl were required for cell growth and enzyme production of 145-C strain and the adequate concentrations were 0.7 and 2.5%, respectively. The effective nitrogen source was peptone and adequate temperature was 28$\pm$2$^{\circ}C$. The 145-C strain was identified as Vibrio sp. from biochemical and biological experiment. The extracellular enzyme produced by Vibrio sp. was purified and the molecular weight was estimated to be 27, 000.

  • PDF

Purification and Characterization of a Chitinolytic Enzyme Produced by Bacillus licheniformis GA9 (Bacillus licheniformis GA9가 생산하는 키틴 분해효소의 정제 및 특성)

  • Hwang, Dong Ho;Hong, Sung Wook;Hwang, Hyung seo;Chung, Kun Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.470-478
    • /
    • 2016
  • A bacterium producing a large amount of chitinolytic enzyme was isolated from the intestinal tract of earthworm. The isolate was identified as Bacillus licheniformis by 16S ribosomal RNA analysis and designated as B. licheniformis GA9. The enzyme was purified by 40-60% ammonium sulfate precipitation, diethyl-aminoethyl groups exchange chromatography, and gel filtration chromatography. The molecular weight was estimated to be 52.1 kDa and the N-terminal amino acid sequence was D-S-G-K-N-G-K-I-I-R-Y-YP-I-R. The optimum activity of the purified chitinolytic enzyme was shown at pH 5.0 and $40^{\circ}C$, and the enzyme was stable in the ranges of $20-50^{\circ}C$ and pH 5.0-6.0. Enzyme activity was increased by $Co^{2+}$, while it was inhibited by $Cu^{2+}$ and $Fe^{2+}$. But it was recovered by chelating metals with ethylenediaminetetraacetic acid. The $K_m$ and $V_{max}$ values of the purified enzyme were 4.02 mg/ml and 0.52 mg/min, respectively. The chitinolytic enzyme characterized in this study has potential applications in areas such as biotechnology, biomedicine, agriculture, and nutrition.