• Title/Summary/Keyword: 게임 추천

Search Result 52, Processing Time 0.029 seconds

Game Recommendation System Based on User Ratings (사용자 평점 기반 게임 추천 시스템)

  • Kim, JongHyen;Jo, HyeonJeong;Kim, Byeong Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.9-19
    • /
    • 2018
  • As the recent developments in the game industry and people's interest in game streaming become more popular, non-professional gamers are also interested in games and buying them. However, it is difficult to judge which game is the most enjoyable among the games released in dozens every day. Although the game sales platform is equipped with the game recommendation function, it is not accurate because it is used as a means of increasing their sales and recommending users with a focus on their discount products or new products. For this reason, in this paper, we propose a game recommendation system based on the users ratings, which raises the recommendation satisfaction level of users and appropriately reflect their experience. In the system, we implement the rate prediction function using collaborative filtering and the game recommendation function using Naive Bayesian classifier to provide users with quick and accurate recommendations. As the result, the rate prediction algorithm achieved a throughput of 2.4 seconds and an average of 72.1 percent accuracy. For the game recommendation algorithm, we obtained 75.187 percent accuracy and were able to provide users with fast and accurate recommendations.

An Artificial Neural Network-based Hero Character Recommendation Training Indirect Information of Overwatch Game (오버워치 게임의 간접 정보를 학습한 인공신경망 기반 영웅 캐릭터 추천)

  • Kim, Sang Won;Jung, Sung Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.155-156
    • /
    • 2017
  • 본 논문에서는 블리자드 회사에서 제작한 게임 중 하나인 오버워치(Overwatch)에서 게임의 간접정보를 학습하여 플레이어에게 유리한 영웅 캐릭터를 추천해주는 인공신경망 기반 영웅 캐릭터 추천 방법을 제안한다. 오버워치에서 게임 맵별로 적군 캐릭터와 아군 캐릭터가 선정되었을 때 플레이어가 어떤 영웅캐릭터를 선정하면 승률에 좋은지를 알기가 어렵다. 본 논문에서는 플레이어의 영웅캐릭터 선정을 도와주기위하여 오버워치 게임의 간접정보를 기반으로 학습데이터를 만들어 인공신경망을 학습한 후 학습한 인공신경망을 이용하여 영웅캐릭터를 추천한다. 실험결과 인공신경망이 추천하는 영웅캐릭터가 적절한 캐릭터임을 확인하였다.

  • PDF

Fuzzy-AHP Based Mobile Games Recommendation System Using Bayesian Network (베이지안 네트워크를 이용한 Fuzzy-AHP 기반 모바일 게임 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.461-468
    • /
    • 2017
  • The current available recommendation systems for mobile games have a couple of problems. First, there is no knowing whether they make a pattern recommendation for games that actual users prefer or for games that they are simply interested in. It is also impossible to know the subjective preference of users in a direct manner. An AHP(Analytic Hierarchy Process)-based recommendation system for mobile games was thus developed to reflect the subjective preference of users directly, but it had its own problem since the degree of preference could vary among users in spite of the same scale for their preferable items. In an effort to solve those problems, this study implemented a recommendation system for mobile games by applying triangular fuzzy numbers of the Fuzzy-AHP technique and the independence of evaluation items in the Bayesian Network. The findings show that the proposed recommendation system recorded the highest accuracy of recommendation results and the highest level of user satisfaction.

AHP-Based Recommendation System of Mobile Games Reflecting User Preferences (사용자 선호도를 반영한 AHP 기반 모바일 게임 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.427-433
    • /
    • 2017
  • Mobile game users tend to value the opinions from their friends or SNS when making a decision on which game to play. This is because they are not satisfied with the information on suggestions provided by the conventional mobile game recommendation systems. In this research, we made a system that can reflect user preference directly by using Analytic Hierarchy Process(AHP). In the system, the hierarchy of AHP is composed of final goal(Level 1), evaluation basis(Level 2) and alternative(Level 3). And the system is made up of an input module, an AHP processing module, a recommendation module and database. Through comparison analysis with two conventional systems to test the performance of the system, we could find that the system got more higher satisfaction than the other systems.

Intelligent Vocabulary Recommendation Agent for Educational Mobile Augmented Reality Games (교육용 모바일 증강현실 게임을 위한 지능형 어휘 추천 에이전트)

  • Kim, Jin-Il
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.108-114
    • /
    • 2019
  • In this paper, we propose an intelligent vocabulary recommendation agent that automatically provides vocabulary corresponding to game-based learners' needs and requirements in the mobile education augmented reality game environment. The proposed agent reflects the characteristics of mobile technology and augmented reality technology as much as possible. In addition, this agent includes a vocabulary reasoning module, a single game vocabulary recommendation module, a battle game vocabulary recommendation module, a learning vocabulary list Module, and a thesaurus module. As a result, game-based learners' are generally satisfied. The precision of context vocabulary reasoning and thesaurus is 4.01 and 4.11, respectively, which shows that vocabulary related to situation of game-based learner is extracted. However, In the case of satisfaction, battle game vocabulary(3.86) is relatively low compared to single game vocabulary(3.94) because it recommends vocabulary that can be used jointly among recommendation vocabulary of individual learners.

Design of System Based on User Preferences for Mobile Game Recommendation (모바일 게임 추천을 위한 사용자 선호도에 기반을 둔 시스템의 설계)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.571-572
    • /
    • 2016
  • 현재 모바일 게임 이용자들은 모바일 게임을 선택할 때 친구들의 직접적인 추천이나 SNS에서의 추천을 이용하여 선택한다. 이러한 이유는 기존의 추천 시스템에서 제공하는 정보가 적합하지 않기 때문이다. 이에 본 연구에서는 불확실한 상황이나 다양한 평가 항목들에 대한 중요도 및 선호도를 순위화하여 우선순위가 높은 항목을 선택하게 하는 계층적 분석 방법을 적용하여 사용자들의 선호도를 직접적으로 반영할 수 있는 모바일 게임 추천 시스템을 제안하였다.

Steam Video Game Recommendation System using Collaborative Filtering and Personal propensity in R system (R 시스템에서 협업필터링과 개인화 요인을 사용한 스팀 비디오 게임 추천 시스템)

  • Song, Min-Hyuk;Shin, Hae-Ran;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.56-59
    • /
    • 2019
  • 하루 평균 동시 접속자가 1,000만 명이 넘을 정도로 많은 사람이 사용하는 플랫폼은 드물다. 이러한 플랫폼 중에 스팀은 독보적인 존재이다. 스팀 내에는 수많은 게임이 있다. 그 수많은 게임 중 각 사용자에게 맞는 게임을 찾아내는 것은 매우 어렵다. 그래서 각 개인한테 맞는 게임을 추천해주는 것이 필요하다. 본 논문에서는 각 개인에 맞는 게임을 추천해주기 위하여 현재까지 가장 좋은 방법으로 알려진 협업 필터링 방법과 장르, 사용한 시간, 사용자 수를 고려하여 추천한다.

Personalized game recommendation system (개인 맞춤형 게임 추천 시스템)

  • Ju-hyun Kim;Yeo-eun Kim;Ah-ram Kim;Jin-hee Park;Hyon Hee Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1202-1203
    • /
    • 2023
  • 본 논문은 스팀(Steam) 게임 플랫폼을 기반으로 약 1000개의 게임 데이터를 활용하여 사용자들에게 알맞은 게임을 추천해주는 시스템을 제안한다. 게임 선택에 영향을 주는 요인들을 언어 객체로 설정하여 규칙 기반 추론 시스템을 구현했다. 선호도 정보는 게임 선택의 기준이 되는 세 가지 요소에 대한 질문에 답하는 방식으로 수집된다. 게임 추천 결과를 시각화하여 신규 유저를 게임에 유입하고 몰입을 촉진하고자 한다.

The Effect of Motivation for Using Mobile Social Network Games on the Game Attitude, Continuous Use Intention and Intention to Recommend the Game (모바일 소셜 네트워크 게임 이용 동기가 게임태도와 지속적 이용의도 및 추천의도에 미치는 영향)

  • Youm, Dong-sup
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.453-459
    • /
    • 2017
  • This study was conducted to review the usage behavior of mobile social network games that are attracting attention as a new growth engine in the game market. To that end, a survey was conducted on 250 male and female university students. The result of the study showed that first, the relationship formation motivation and seeking fun during leisure times in association with mobile social network games had a positive effect on game attitudes. Second, the relationship formation motivation had a positive effect on the continuous use intention. Third, the relationship formation motivation and the fun-seeking motivation had a positive effect on word-of-mouth recommendation, while the relationship formation motivation and advertisement recommendation motivation had a positive effect on the intention to recommendation online formats. Fourth, the attitude towards mobile social network games had a positive effect on the continuous use intention. Lastly, the attitude towards mobile social network games had a positive effect on only the intention to recommendation through word-of-mouth. This study is expected to provide useful and basic data for the development of quality game content that will cater to users' needs.

Recommender System Design with Item2vec and LSTM (Item2vec과 LSTM을 사용한 추천 시스템 설계)

  • Minsu Cha;Jiyoung Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.145-146
    • /
    • 2023
  • 본 논문에서는 최대 규모의 게임 플랫폼인 Steam에서 수집한 유저 정보 데이터 셋에 Item2vec과 LSTM을 사용하여 추천 시스템을 구현한다. 수집한 유저 정보 데이터 셋에 Item2vec을 적용하여 각각의 유저들이 보유하고 있는 고유한 Appid들을 200차원의 벡터로 변환한다. 그 후 데이터 셋을 기간에 따라 4단계의 시퀀스로 나눈 후 LSTM을 사용하여 유저별로 최대 5가지의 추천 리스트를 생성한다. 유저 정보 데이터 셋은 액티브한 유저 정보를 얻기 위해 Steam 게임 리뷰 항목에서 리뷰를 남긴 유저들의 데이터를 api를 사용해 수집했으며 LSTM을 사용한 실험의 성능 평가 지표는 RMSE를 사용했고 이때의 성능은 0.1357을 얻을 수 있었다.

  • PDF