Most algorithms for detecting incidents have been developed under the premise that congestion must happen whenever an incident occurs. For that reason, the performance of these algorithms could not be guaranteed in cases where congestion did not happen due to traffic operations with low flows despite the occurrence of an incident. The objective of this paper is to develop an automatic incident detection algorithm using a new diagram that can reliably detect the incident under various conditions of traffic operations including a low volume state. Compared with the McMaster Algorithm, the proposed algorithm in this paper was evaluated with three different cases in which the incidents occur in traffic operations with a low volume state, a relatively high volume state, and a recurrent congestion state. It is shown that the new algorithm has a capability to identify the flow characteristics of incidents for all the three cases and is much better than McMaster algorithm in terms of detection rate and false alarm rate.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.643-644
/
2023
본 논문에서는 고속도로 전용차로에서의 운행기준을 위반한 차량을 검지하는 시스템을 제안한다. 다인승 탑승차를 별도의 차로로 통행하도록 하여 혼잡도를 해소하겠다는 정책을 시행하고 있으며, 9인승 이상 차량에 6인 이상 텁숭자를 다인승 통행차량으로 정의하며, 이러한 기준을 만족하지 않는 차량을 자동 검지하는 시스템이다. 트리거 신호 검지기와 4조의 적외선 카메라로 차량 내부 촬영하고 결과 이미지를 분석하여 자동으로 다인승 차량을 판별하여 운행 위반을 검지한다. 테스트 결과 주야간에 관계없이 80% 이상의 우수한 검지율을 나타내었다.
This study aims at developing the model that is able to detect the compression wave, which is included as a similar situation in incidents, that causes false applicable to the similar character such as incidents in the incident detection model for expressways. In this study, it has been checked whether the number of false alarms is decreased or not by modularizing this model for being able to applicable to other models such as DES and DELOS, etc. which do not perform the compression wave test based on the compression wave test process of APID model which has been being used in the expressway traffic management system currently. The evaluation in this study focuses on the sensitivity of the model and the results analysis is performed classified by each polling cycle. And how well these models are working is evaluated by each polling cycle. In addition to this, the detection rate, the false alarm rate and the average detection time in both the existing models and the model in this study are calcuated. As a result of appling the model in this study, it is found that the false alarm rate is improved through the reasonable decrease in the number of false alarm frequencies and there are not remarkable changes concerning the detection rate and the average detection time. To sum up, it is expected that a good number of improvement effects will be occurred when this model is applied to the actual expressway traffic management system.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.11
no.2
/
pp.29-38
/
2012
The data quality and measurements along consecutive detector stations can vary much even in the same traffic conditions due to variety in detector types, calibration and maintenance effort, field operation periods, minor geometric changes of roads and so on. These faulty situations often create 10% or more of inherent difference in important traffic measurements between two stations even under stable low flow condition. Low detection rates(DR) and high false alarm rates(FAR) therefore sets in among many popular Automatic Incident Detection Algorithms(AIDA). This research is two-folded and aims mainly to develop a new AIDA for uninterrupted flow. For this purpose, a technique which utilizes a Simple Arithmetic Operation(SAO) of traffic variables is introduced. This SAO technique is designed to address the inherent discrepancy of detector data observed successive stations, and to overcome the degradation of AIDA performance. It was found that this new algorithm improves DR as much as 95 percent and above. And mean time to detection(MTTD) is found to be 1 minutes or less. When it comes to FAR, this new approach compared to existing AIDAs reduces FAR up to 31.0 percent. And capability in persistency check of on-going incidents was found excellent as well.
This study utilizes the fuzzy logic and genetic algorithm to improve the existing incident detection models by addressing the problems associated with "crisp" thresholds and model transferability (applicability). The model's major components were designed to be a set of the fuzzy inference engines, and for the self-adaptation capability the genetic algorithm was introduced in optimization(or training) of the fuzzy membership functions. This approach is often called "the hybrid of fuzzy-genetic algorithm" The model performance was tested and found to be compatible with that of the existing well-recognized models in terms of performance measures such as detection rate, false alarm rate, and detection time. This study was not an effort for simple improvement of the model performance, but an experimental attempt to incorporate new characteristics essential for the incident detection model to be universally applicable for various roadway and traffic conditions. The study results prove that the initial objective of the study was satisfied, and suggest a direction that the future research work in this area must follow.
Kim, Dong Sun;Baek, Joo Hyun;Song, Ki Han;Rhee, Sung Mo
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.4D
/
pp.581-586
/
2006
Incidents, which is unexpected unusual events such as traffic accidents, have increased on the most roads in Korea. The obstruction of a fluent traffic flow occurred by incidents causes the traffic congestion and decreases the capacity. The Wavelet technique was applied to detect the road section and the happening time of incidents on urban freeways in this study, and this technique has been widely used in many engineering fields such as an electrical engineering, etc. The availability and validity of the Wavelet technique to the detection of incidents was examined by the occupancy rate, the important element of traffic flows, which is extracted from the data of detectors installed on Seoul Urban freeways. Then, this result is compared to the California Algorithm and the Low-Pass Filtering Algorithm among basic present detection algorithms, which are based on the occupancy rate. As a result, the false alarm rate of this method was similar as that of the California algorithm and the Low-Pass Filtering algorithm, but the detection rate is higher.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.6
/
pp.25-39
/
2018
The purpose of this study is to develop an efficient incident detection algorithm by applying machine learning, which is being widely used in the transport sector. As a first step, network of the target site was constructed with micro-simulation model. Secondly, data has been collected under various incident scenarios produced with combination of variables that are expected to affect the incident situation. And, detection results from both McMaster algorithm, a well known incident detection algorithm, and the Naive Bayes algorithm, developed in this study, were compared. As a result of comparison, Naive Bayes algorithm showed less negative effect and better detect rate (DR) than the McMaster algorithm. However, as DR increases, so did false alarm rate (FAR). Also, while McMaster algorithm detected in four cycles, Naive Bayes algorithm determine the situation with just one cycle, which increases DR but also seems to have increased FAR. Consequently it has been identified that the Naive Bayes algorithm has a great potential in traffic incident detection.
Loop detection systems have been used in real-time signal control system to collect traffic information for estimating queue lengths. The queue length algorithm uses speed as a key variable estimated from occupancy time and average vehicle length. The measurement of average vehicle length is affected from the lengths of feeder cable, but their effects have not yet been evaluated. In this study, the variability of average vehicle length due to the lengths of feeder cable is assessed through a field study, and a practical guidelines is proposed. By applying this result, the operational performance of real-time signal control system could be improved.
This study focuses on improving the performance of freeway incident detection by introducing some new measures to reduce false alarms in developing a new incident detection model. The model consists of the 5 major components through which a series of decision makings in determining the given traffic flow condition are made. The decision making process was designed such that the causes of traffic congestions can be accurately classified into several types including incidents and bottlenecks according to their unique characteristics. The model performance was tested and found to be compatible with that of the existing well-recognized models in terms of the detection rate and detection time. It should noted that the model produced much less false alarms than most of the existing models. The study results prove that the initial objective of the study was satisfied as it was an experimental trial to improve the false alarm rate for the incident detection model to be more pactically usable for traffic management purposes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.