• 제목/요약/키워드: 검색 랭킹 모델

검색결과 24건 처리시간 0.034초

정보 검색 과제별 동적 검색 랭킹 모델 구현 및 검증: 사용자 중심 적합성 판단 모형 평가를 중심으로 (Implementation and Verification of Dynamic Search Ranking Model for Information Search Tasks: The Evaluation of Users' Relevance Judgement Model)

  • 박정아;손영우
    • 감성과학
    • /
    • 제15권3호
    • /
    • pp.367-380
    • /
    • 2012
  • 본 연구는 정보 검색 과제별 주요 적합성 판단 기준을 실제 정보 검색 시스템으로 구현해 보고 사용자 평가를 통해 그 효과를 검증해 보고자 하였다. 이를 위해, 사용자 적합성 판단 기준들을 정보 검색 시스템에서 적합성을 결정하는 검색 랭킹 모델의 랭킹 요소들로 적용하였다. 그리고 정보 검색 과제별 차이가 있는 동적 검색 랭킹 모델과 차이가 없는 정적 검색 랭킹 모델을 시스템으로 구현하였고, 이에 대한 사용자 평가를 진행하여 비교해 보았다. 총 45명의 참가자가 실험에 참여하였고, 정보 검색 과제별 차이가 있는 동적 검색 랭킹 모델과 차이가 없는 정적 검색 랭킹 모델이 적용된 각각의 검색 시스템에서 3개의 검색 과제를 수행하였다. 3개의 정보 검색 과제로는 사실 검색 과제, 문제 해결 검색 과제, 의사 결정 검색 과제가 사용되었다. 각 참가자는 검색 결과 첫 페이지 상위 5 개의 검색 결과에 대해 적합성 정도를 7 점 척도로 평가하였다. 그 결과, 사용자는 전반적으로 모든 검색어에 동일하게 반응하는 정적 검색 랭킹 모델을 적용한 시스템보다 정보 검색 과제별로 사용자 적합성 판단기준의 변화에 따라 랭킹 요소 가중치를 달리한 동적 검색 랭킹 모델을 더 높이 평가하는 것을 확인할 수 있었다. 본 연구는 이를 통해, 정보 검색 과제를 고려한 정보 검색 시스템 디자인의 필요성과 함께, 사용자 중심 적합성 판단 모형 연구 결과를 실제 정보 검색 시스템으로 구현하여 평가함으로써 사용자 중심 적합성 연구 결과의 타당성을 검증하였다는 점, 그리고 사용자 연구 접목을 통한 시스템 개선의 중요성을 강조하였다는 점에서 의의를 가진다.

  • PDF

후위 표기법을 사용한 수학식 색인 및 랭킹 (Indexing and Ranking Mathematical Equations Using Postfix Notation)

  • 이세희;신준수;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.160-164
    • /
    • 2009
  • 최근 인터넷 및 컴퓨터의 사용이 활발해짐에 따라 문서의 디지털화가 빠르게 진행되고 있다. 이런 변화에 따라 수학식이 많이 사용되는 과학, 공학, 수학 등의 분야와 관련된 문서들을 검색해야할 필요성이 늘어가고 있다. 그러나 현재 일반 검색엔진은 텍스트 검색만을 제공하며 별도의 수학식 검색은 제공하지 않는다. 따라서 본 논문에서는 수학식 검색이 가능하도록 수학식의 색인 방법 및 랭킹 방법을 제안한다. 제안하는 색인 방법은 MathML로 입력되는 수학식을 후위 표기법과 일반 색인 방법의 두 가지로 색인하며, 언어모델을 사용하여 질의에 적합한 수학식을 랭킹한다. 일반 검색 엔진의 성능과 비교하기 위하여 2-포아송 모델과 제안 모델을 비교하였으며, 그 결과 제안 모델의 성능이 더 우수함을 보였다.

  • PDF

토픽 모델을 이용한 수학식 검색 결과 재랭킹 (Reranking Search Results for Mathematical Equation Retrieval Using Topic Models)

  • 양선;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.77-81
    • /
    • 2013
  • 본 논문은 두 가지 주제에 대해 연구한다. 첫 번째는 수학식 검색에 대한 것이다. 웹에는 양질의 수학식 데이터가 마크업 언어 형태로 저장되어 있으며 이를 활용하기 위한 연구들이 활발히 진행되고 있다. 본 연구에서는 MathML (Mathematical Markup Language)로 저장된 수학식 데이터를 일반 질의어를 이용하여 검색한다. 두 번째 주제는 토픽 모델(topic model)로 검색 성능을 향상시키는 방법에 대한 것이다. 먼저 수학식 데이터를 일반 자연어 문장으로 변환한 후 Indri 시스템을 이용하여 검색을 수행하고, 토픽 모델을 이용하여 미리 산출된 스코어를 적용하여 검색 순위를 재랭킹한 결과, MRR 기준 평균 5%의 성능을 향상시킬 수 있었다.

  • PDF

XML 문서의 내용기반 검색을 위한 인덱싱 모델 및 색인어의 가중치 부여 (Indexing Model and Weight Assignment on Keywords for Contents based Retrieval in XML Documents)

  • 한예지;한창우;서동혁;김수희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.103-105
    • /
    • 2004
  • 본 논문에서는 XML 문서의 내용을 효율적으로 검색하기 위해 필요한 메타데이터의 스키마몰 개발하고 이론 바탕으로 구축되는 내용기반 인덱싱 모델을 제안한다. 제안하는 내용기반 인덱싱 모델은 엘리먼트타입에 따라 랭킹 검색과 불리언 검색을 지원한다. 랭킹 검색 결과의 재현도와 정확도를 높이기 위해, 검색 결과의 출력 기준 노드가 리프 노드와 내부 노드인 경우를 구별하여 색인어에 대한 가중치를 부여하고, 이를 이용하여 질의와 엘리먼트간의 유사도를 계산하는 방법을 제안한다.

  • PDF

랭킹 결합에 의한 기술용어 패러프레이즈 추출 (Terminological Paraphrase Extraction with Ranking Combination)

  • 최성필;조민희;정한민;맹성현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.175-180
    • /
    • 2012
  • 기술용어 패러프레이즈 (Terminological Paraphrase, TP)는 학술 문헌 내에서 기술 용어의 개념 및 정의를 다른 형태로 풀어서 알기 쉽게 서술적 문구 (descriptive expression) 를 의미한다. 이러한 TP들에 대한 효율적인 식별과 추출은 학술 정보에 대한 개념적 접근이나 학술 정보 검색의 재현율 향상에 매우 중요하다. 본 논문은 생명 공학 분야의 논문에 나타나는 다양한 형태의 TP들을 효율적으로 추출하기 위한 정보 검색 기반의 추출 방법론을 제시하고 총 여섯 가지의 추출 랭킹 모델을 기반으로 이를 결합함으로써 TP추출의 확장 가능성에 대한 실험적 연구를 수행한다. 실험 결과, 활용된 랭킹 모델이 서로 상호 보완적인 관계에 있음을 알 수 있었으며, 랭킹 결합에 의한 성능 개선 효과를 얻을 수 있었다.

  • PDF

소셜 네트워크에서 관계 랭킹 모델 (A Model for Ranking Semantic Associations in a Social Network)

  • 오선주
    • 한국전자거래학회지
    • /
    • 제18권3호
    • /
    • pp.93-105
    • /
    • 2013
  • 실생활에서 소셜 네트워크 서비스의 사용은 활성화되고 있으나 이를 비즈니스 차원에서 활용하기 위한 이론적이며 실증적인 연구가 부족한 상황이다. 기존의 다양한 데이터로부터 소셜 네트워크를 구축하고, 구축된 소셜 네트워크에서 잠재적 관계를 도출하거나 찾는 등의 유용한 활용 방법에 대한 연구가 요구된다. 본 연구는 소셜 네트워크에서 잠재되어 있는 관계를 인식하여 유용한 관계를 찾기 위한 방안으로서 소셜 네트워크에서 구성원간 관계를 검색하기 위한 랭킹 방법을 제안한다. 본 연구에서는 온톨로지를 기반으로 개체간 의미적 관계를 유추하여 확장하고 이를 바탕으로 다양한 랭킹 기준을 융통성 있게 조합하여 검색하고자 하는 관계를 효율적으로 찾기 위한 랭킹 모델을 제시하였다. 또한 제안한 연구 방법이 유의미한 것을 보이기 위하여 기업과 대학 간 사회적 네트워크에서 임의의 관계를 검색하고 강도를 측정하는 데 연구 모델을 적용하여 보았다. 본 연구에서 제안하는 시맨틱 웹기반 소셜 네트워크에서 임의의 관계를 검색하여 랭킹하는 방법은 빅데이터 시대에 유용한 관계 정보를 편리하게 검색할 수 있는 효과적인 방법으로 활용이 기대된다.

의미적 유사성에 기반한 온톨로지 선택 랭킹 모델 (Ontology Selection Ranking Model based on Semantic Similarity Approach)

  • 오선주;안중호;박진수
    • 한국전자거래학회지
    • /
    • 제14권2호
    • /
    • pp.95-116
    • /
    • 2009
  • 지식 재사용 측면에서 기존의 온톨로지를 재사용할 수 있다면 많은 자원을 절약할 수 있을 것이다. 그러나 기존의 온톨로지를 활용하기 위해서는 보다 발전된 온톨로지 검색 기능이 요구된다. 현재까지 이루어진 관련 연구들에서는 주로 렉시컬 매칭기법을 사용하여 온톨로지를 검색하였다. 그러나 의미적 측면에서 문제점이 있으므로 본 연구에서는 관계의 의미적 유사성에 기반한 온톨로지 선택 랭킹 모델을 제안한다. 본 연구는 개념간 계층 구조와 관계를 온톨로지 검색에 이용함으로써 온톨로지의 선택 랭킹을 효과적이며 실질적으로 개선하였다. 또한 실험을 통해 연구 모델의 결과와 선행 연구의 결과, 온톨로지 전문가의 랭킹 결과를 비교 분석하고 연구 모델의 타당성을 검증하였다. 본 연구 결과는 온톨로지 검색 연구를 이론적으로 발전시켰을 뿐 아니라 실무적인 측면에서 실무자들이 온톨로지를 쉽게 찾아 재사용할 수 있도록 한다.

  • PDF

C-rank: 웹 페이지 랭킹을 위한 기여도 기반 접근법 (C-rank: A Contribution-Based Approach for Web Page Ranking)

  • 이상철;김동진;손호용;김상욱;이재범
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.100-104
    • /
    • 2010
  • 수많은 웹 문서로부터 웹 서퍼가 원하는 정보를 찾기 위해 다양한 검색 엔진들이 개발되어왔다. 검색 엔진에서 가장 중요한 기능 중 하나는 사용자 질의에 대해서 웹 문서를 평가하고 랭킹을 부여하는 것이다. PageRank등의 기존 하이퍼링크 정보를 이용한 웹 랭킹 알고리즘은 토픽 드리프트 현상을 발생시킨다. 이러한 문제를 해결하기 위하여 연관성 파급 모델이 제안되었지만, 기존의 연관성 파급 모델을 기반으로 하는 랭킹 알고리즘은 성능상의 이유로 실제 웹 검색 엔진에서 사용하기 어렵다. 본 논문에서는 이러한 토픽 드리프트 현상을 완화하면서 좋은 성능을 제공하는 새로운 랭킹 알고리즘을 제안한다. 다양한 실험을 통하여 기존 알고리즘들과 비교한 제안하는 알고리즘의 우수성을 검증한다.

블로그 검색을 위한 태그 기반 피드 포스트 랭킹 알고리즘

  • 한승균;이상진;박종헌
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 추계학술대회
    • /
    • pp.623-628
    • /
    • 2007
  • 본 논문은 Web 2.0시대의 새로운 컨텐츠 매체로 각광받고 있는 블로그와 관련하여 태그 기반의 검색 알고리즘을 제안하고자 한다. 최근 블로그 검색과 관련하여 태그 기반의 블로그 검색 서비스가 등장하기 시작했지만, 현재 제공되는 태그 기반의 검색 서비스는 태그의 유무와 컨텐트의 최신성을 주요 기준으로 삼고, 태그와 컨텐트 간의 관련성을 제대로 고려하지 않아 검색 결과가 만존스럽지 못하는 경우가 많다. 따라서 본 논문에서는 태그와 컨텐트와의 관련성을 실수화하고 이를 주요 기준으로 검색 결과의 순위를 결정하는 PTRank 알고리즘을 제안하였다. PTRank 알고리즘에서는 1) 태그가 피드의 제목에 포함되었는지 여부, 2) 태그가 피드의 설명에 나타나는 회수, 3) 태그가 아이템의 제목에 포함되었는지 여부, 4) 태그가 아이템의 설명에 나타나는 횟수, 5) 피드 내에서 태그의 IDF값, 6) 사용자의 검색 행위를 이용해 태그와 컨텐트간의 관련성을 실수화하였다. 실험 결과, PTRank 모델 및 학습 알고리즘이 태그 기반의 피드 검색에서 잘 작동하며 검색에 효과적으로 활용될 수 있다는 것을 알 수 있었다.

  • PDF

기계학습을 이용한 단문 오피니언 문서의 효율적 검색 기법 (Efficient Retrieval of Short Opinion Documents Using Learning to Rank)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.117-126
    • /
    • 2013
  • 최근 들어 트위터나 페이스북과 같은 SNS가 대중화되면서, 오피니언 마이닝에 관한 연구가 활발히 진행되고 있다. 그러나 현재의 오피니언 마이닝 연구는 대부분 감성분류나 특징선택 방법에 중점을 두고 있으며, 오피니언 문서의 검색에 관한 연구는 아직 미진한 실정이다. 본 논문에서는 단문으로 구성된 오피니언 문서로부터 사용자가 원하는 문서들을 효율적으로 검색하는 기법을 제안한다. 제안된 방법에서는 기존의 감성분류 방법을 활용함과 동시에 문서의 질적 평가를 위해 여러 가지 특징들을 적용한다. 검색 모델을 생성하기 위해 기계학습 기반 랭킹 기법을 활용하며, 감성 분류 모델을 기계학습 랭킹 모델에 통합하는 방법을 사용한다. 또한 실험을 통하여 제안된 방법이 오피니언 검색에 효율적으로 적용될 수 있음을 보여준다.