• 제목/요약/키워드: 검색어 추출

검색결과 329건 처리시간 0.031초

문서의 주제어별 가중치와 말뭉치를 이용한 한국어 문서의 자동분류 : 베이지안 분류자 (An Automatic Classification of Korean Documents Using Weight for Keywords of Document and Corpus : Bayesian classifier)

  • 허준희;고수정;김태용;최준혁;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.154-156
    • /
    • 1999
  • 문서 분류는 미리 정의된 두 개 또는 그 이상의 클래스에 새로 생성되는 객체들을 할당하는 방법이다. 문서의 자동 분류에 대한 연구는 오래 전부터 연구되어 왔지만 한국어에 대한 적용 및 연구는 다른 분야에 비해 아직까지 활발히 이루어지지 않고 있다. 본 논문에서는 문서를 자동으로 분류하기 위해 문서의 주제어에 가중치를 부여하고, 부족한 문서의 특징을 보충하기 위하여 말뭉치로부터 주제어들과의 상호정보에 의해 추출된 단어를 사용하여 문서를 표현한 후, 가중치를 부여한 문서의 주제어에 베이지안 분류자를 사용하여 문서분류를 수행한다. 실험은 한국어 정보검색 실험용 데이터 집합인 KTset95 문서 4,414개 중 1,300개의 문서를 학습 집합으로, 1,000개의 문서를 분류에 대한 검증 집합으로 사용하였다. 실험 결과, 순수 베이지안 확률을 사용한 기존의 방법보다 실험 집합과 검증 집합에서 각각 1.92%, 4.3% 향상된 분류 정확도를 얻었다.

  • PDF

지식 생산 방식에 따른 집단지성 구조 분석 -네이버 지식IN과 위키피디아를 중심으로- ('Collective intelligence Structure' Analysis)

  • 한창진
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.1363-1373
    • /
    • 2009
  • 본 연구는 두 집단지성의 가장 대표적인 서비스인 네이버 지식iN과 위키피디아의 구조적, 경험적 차이를 바탕으로 생산의 차원에서 생산 주기, 생산 참여자, 생산물의 모델을 설정하고, 새롭게 탄생하는 지식을 중심으로 검증함으로써 최종 지식 소비 행위를 반영한 각각의 종합모델을 도출하였다. 우리는 웹에서 집단지성의 일상화를 확인할 수 있다. 지식 획득 매체가 매스미디어에서 인터넷으로 변화하는 과정에서 등장한 포털 및 검색사이트는 지식의 생산이 전문가패러다임에서 소비자 중심으로 재편될 수 있는 가능성을 열어주었다. 그리고 이러한 생산 방식의 변화는 '지식'의 개념 역시 변화시키고 있다. 즉, 집단지성이라는 새로운 웹2.0의 현상이 지식생산방식을 변화시키고 변화된 지식생산방식은 '지식'자체를 변화시킨다는 이론적 가설을 도출할 수 있는 것이다. 본 연구는 이러한 새로운 현상들을 분석하기 위해서는 먼저 보다 엄밀하게 집단지성의 개념을 규정할 필요성에 출발하였다. 현재 집단지성이라는 이름으로 불리면서 급격히 성장하고 있는 위키 방식의 인터넷 서비스와 지식검색 방식의 인터넷 서비스를 비교함으로써 보다 정교한 집단지성의 모델을 구축하고자 하였다. 위키형 집단지성과 지식검색형 집단지성의 차이점은 경험적으로도 뚜렷하게 확인할 수 있다. 본 연구는 이러한 경험적 차이와 기존의 문헌에서 밝혀진 사실들을 바탕으로 두 서비스의 지식생산 방식을 생산플로우, 생산참여자 성향, 생산물(지식)의 성향과 같이 세 영역으로 나누어 각각의 가설 모델을 설정하고 이 모델을 선정된 질의어를 바탕으로 검증한 뒤에 최종적인 모델을 도출하는 방식으로 진행되었다. 지식검색형 집단지성은 '질문-답변-채택'의 구조이고, 그 구조 속에서 '질문기-답변기-순서화기'를 거쳐 하나의 지식 덩어리인 'K-let'을 생산한다. 생산된 'K-let'들은 지식검색서비스의 데이터베이스에 축적되고, 이는 공통된 질의어를 기준으로 소비자들에 의해서 검색되어 소비된다. 하나의 질문에 대해 여러 개의 답변들이 존재하고, 답변자의 성향은 크게 전문성과 체계성을 바탕으로 한 전문가형 답변자와 경험적이고 의견지향적인 대화형 답변자로 나눠진다. 다수의 네티즌들의 참여에 의해서 지식의 생산이 진행되므로 질문의 성향 역시 사실, 의견, 경험 등 다양한 스펙트럼을 가지는 모델로 설정하였다. 반면에 위키형 집단지성은 개방형 플랫폼을 바탕으로 한 백과사전의 형식이며, 이러한 형식 속에서 최초의 개념어 등록과 다수의 편집활동을 거치면서 완성되지 않는 하나의 아티클인 'W-let'을 생산한다. 이러한 'W-let'은 생성 초기에 소수에 의한 활발한 내용 입력 활동으로 어느 정도의 안정화를 거친 후에는 꾸준한 다수의 수정활동을 통해서 'W-let'의 생명력을 유지함으로써 지식의 실제적인 변화를 반영한다. 생산된 'W-let'들은 위키형 집단지성 서비스의 데이터베이스에 축적되고, 이것들은 내부링크를 통해서 모두 연결되어 있다. 백과사전 형식으로 하나의 개념어를 설명하는 하나의 아티클은 오로지 사실적인 지식들로만 구성되나 내부링크와 외부링크를 통해서 다양한 스펙트럼을 가지는 모델로 설정하였다. 위와 같이 설정된 모델을 바탕으로 공통된 질의어 및 개념어를 선정하여 각각의 서비스에 노출시켰다. 이를 통해서 얻어진 각 서비스의 데이터베이스에 축적된 모든 데이터들 중에서 일정한 기간을 기준으로 각각의 모델 검증에 필요한 데이터를 추출하여 분석하는 방식으로 진행되었다. 그 결과 지식검색형 집단지성에서는 '질문-답변-채택'의 생산 구조 속에 다수가 참여하여 질문-채택답변-기타답변으로 배열되어 있는 완성된 형태의 K-let들을 지속적으로 생산하며 비슷한 성향을 가진 K-let들이 반복적으로 생산되어 지식검색 데이터베이스에 누적된다. 지식 소비자들은 질의어 검색을 통해서 다양한 K-let들을 선택하여 비교, 검토한 후에 선택된 K-let들의 배열은 해체되어 소비자들에 의해서 재배열됨을 발견할 수 있었다. 이에 지식검색형 집단지성이란 다수의 의해서 생산되고 누적된 지식들이 소비자의 검색과 선택에 의해 해체되어 재배열되는 지식의 맞춤화 과정이라고 정의내릴 수 있었다. 반면에 위키형 집단지성에서는 '내용입력-미세수정' 구조 속에서 생명력 있는 W-let을 생성한다. W-let은 백과사전처럼 정리되어 내부링크를 통해서 서로 연결되고, 외부링크를 통해 확장되고, 지식소비자들은 검색을 통해 최초의 W-let에 도달한 후에 링크를 선택함으로써 지식을 확장시킴을 검증할 수 있었다. 따라서 위키형 집단지성이란 다수의 의해서 생산되고 정리된 지식들이 소비자의 검색과 링크에 의해 무한히 확장되는 지식의 확대 재생산되는 과정이라고 정의 내릴 수 있다. 결국, 현재의 집단지성이란 지식이 다수의 참여로 생산됨으로써 개인에게 맞춤화되고, 끊임없이 확대 재생산되는 과정을 의미한다. 그리고 이러한 집단지성의 방식은 지식이라는 현재의 차원을 넘어서 정치, 경제를 비롯한 사회의 전 영역으로 점차적으로 확대되어갈 것이다. 앞으로 연구들은 두 가지 모델이 혼재되어 있는 현재의 집단지성이 어떠한 새로운 모델을 만들면서 다른 영역으로 확장되어갈 것인지에 대해서 초점을 맞춰 나가야할 것이다.

  • PDF

XML을 이용한 메타데이터 분산검색 시스템의 설계 및 구현에 관한 연구 (A Study on the Design and Implementation of the System for Distributed Information Retrieval based on the Metadata using of XML)

  • 송종철;홍기채
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (하)
    • /
    • pp.2415-2418
    • /
    • 2002
  • 인터넷이 급속히 발전하고 확산되면서 정보를 효율적으로 활용하고 유통시키기 위한 연구가 활발히 진행되고 있다. OAI(Open Archives Initiative)에서는 대용량 정보를 메타데이터를 이용하여 공유하고 검색할 수 있는 프로토콜 및 임프라에 대한 연구와 표준화를 추진하고 있다. 또한 EMAF(An Extensible Multi-Agent Framework)에서는 멀티에이전트를 이용한 정보 유통 및 활용한 대한 연구가 진행중이다. 이에, 본 논문에서는 메타데이타과 XML, 멀티에이전트를 이용한 분산검색 시스템을 설계하고 구현하였다. 본 시스템은 조정에이전트와 응용에이전트로 구성되고 에이전트간 통신에는 XML과 OAI의 메타데이타 하비스팅 프로토콜을 응용하였다. 메타데이터에 대한 검색을 수행하여 검색 성능을 높일 수 있었으며 또한 사용자가 입력한 문장 단위의 질의를 처리할 수 있는 기능과 관련어를 추출할 수 있는 기능도 제공한다.

  • PDF

대용량 인쇄 한글 문서 검색을 위한 영상 기반 단어 매칭 방법 (An Image-based Word Matching Method for Large volume Printed Hangul Document Retrieval)

  • 진영범;오일석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.461-463
    • /
    • 2000
  • 기계 인쇄된 문서 영상에서 주제어를 탐색하는 문제는 여러 응용 분야에 필수적인 핵심 기술이지만 수작업 또는 OCR 소프트웨어를 이용하여 텍스트로 변환하는 방법은 많은 비용 때문에 한계를 가지고 있다. 요즘 영상 형태로 원문을 저장하는 경우가 많으므로 본 논문은 영상-기반 매칭을 통한 검색 방법을 채택하였다. 문자 또는 단어 매칭에서 가장 중요한 요소가 특징인데 본 논문에서는 디지털도서관과 같이 매칭 대상 단어가 수천만∼수십억에 달하는 대용량 한글 문서 검색에 이용될 수 있도록 비교적 간단히 추출할 수 있고 차원수 조절이 용이한 4방향 프로파일 특징을 이용하는 빠른 검색 방법을 제안한다. 실험결과 8-차원 정도의 간단한 특징으로도 의미 있는 검색 성능을 얻을 수 있음을 보였다.

  • PDF

자연어 질의 유형판별과 응답 추출을 위한 어휘 의미체계에 관한 연구 (A Study on Word Semantic Categories for Natural Language Question Type Classification and Answer Extraction)

  • 윤성희
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 추계학술대회
    • /
    • pp.141-144
    • /
    • 2004
  • 질의응답 시스템이 정보검색 시스템과 다른 중요한 점은 질의 처리 과정이며, 자연어 질의 문장에서 사용자의 질의 의도를 파악하여 질의 유형을 분류하는 것이다. 본 논문에서는 질의 주-형을 분류하기 위해 복잡한 분류 규칙이나 대용량의 사전 정보를 이용하지 않고 질의 문장에서 의문사에 해당하는 어휘들을 추출하고 주변에 나타나는 명사들의 의미 정보를 이용하여 세부적인 정답 유형을 결정할 수 있는 질의 유형 분류 방법을 제안한다. 의문사가 생략된 경우의 처리 방법과 동의어 정보와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법을 제안한다.

  • PDF

질문구조의 전형을 이용한 정보요구의 모형화에 관한 연구 (A Study on Modeling of Information Need Using Stereotype of Question Structures)

  • 김기영;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 1995년도 제2회 학술대회 논문집
    • /
    • pp.17-20
    • /
    • 1995
  • 본 연구는 질의어 확장 및 단기 이용자 모형 구축에 응용할 수 있는 하나의 기법으로서 이용자 질문구조의 전형을 통한 정보요구의 모형화를 실험을 통해 제시한다. 실험방법은 이용자의 질문을 시소러스를 통해 분석, 구조화 하고 그 질문구조에서 전형을 추출한 후 전형에 따라 요구하는 정보가 질문구조내에 일정하게 위치하는지를 알아보았다. 이러한 실험을 통해 6가지 질문구조 전형을 추출할 수 있었으며 질문구조의 전형을 이용한 정보요구 모형의 구축이 타당성이 있음을 입증하였고 지능형 정보검색 시스템에의 적용가능성을 논의하였다.

  • PDF

검색용 MeSH 필터와 단어인접탐색 기법을 활용한 KoreaMed 검색 효율성 향상 연구 (A Study on the Retrieval Effectiveness of KoreaMed using MeSH Search Filter and Word-Proximity Search)

  • 정소나;정지나
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.596-607
    • /
    • 2017
  • 의학학술문헌에는 해부학적 조직이나 기관명이 종양, 질환 또는 감염 용어들과 서로 조합하여 사용되는 언어적 특성을 가지고 있다. 의학학술문헌을 검색할 때 데이터베이스가 제공하는 통제어휘도구인 Medical Subject Headings (MeSH)를 활용하면 합성어, 동의어, 그리고 관련어를 추가로 검색할 수 있어 검색효율이 높다. 본 연구에서는 위암(Stomach Neoplasms) 어휘군을 검색용 필터로 추가하는 방법과 동시출현용어의 거리를 측정하여 단어인접탐색 기법으로 검색효율성을 향상시키는 연구를 수행하였다. 검색용 MeSH에 추가할 어휘군을 결정하기 위해 실험데이터로 PubMed에서 중심주제어가 "Stomach Neoplasms"인 2007년~2016년 논문 8,625편을 내려 받아 논문제목으로부터 Stomach와 Neoplasms 관련 용어의 동시출현여부를 분석하였다. 검색효율성은 KoreaMed에서 검색되는 MEDLINE 학술지를 대상으로 "Stomach Neoplasms"가 MeSH로 색인되어 있는 277편으로 검증하였는데 MEDLINE MeSH, MeSH on Demand, 그리고 KoreaMed MeSH Indexer의 "Stomach Neoplasms" 색인어 추출여부와 검색용 필터로 어휘군을 적용했을 때, 그리고 동시출현 용어의 단어인접검색 기법을 적용했을 때 "Stomach Neoplasms"의 매칭여부를 비교하였다. 가장 출현빈도가 높은 용어는 "Gastric Cancer"로 2,780회 출현하였다. "Gastric Adenocarcinoma", "Gastric MALT Lymphoma" 등과 같이 "Stomach" 용어와 "Neoplasms" 관련 조직학적 용어가 조합된 경우는 7,376개(88.51%)였다. 동시출현 거리가 2단어인 용어는 "Stomach"와 "Neoplasms"의 합성어로 5,234개(70.95%)였다. 연구 결과 MeSH용어를 제외하고 973개의 용어를 후보어휘군으로 선정하였다. MEDLINE MeSH와 KoreaMed MeSH Indexer의 MeSH 매칭률은 209편(75.5%)이었는데 검색필터를 적용한 결과 263편(94.9%)으로, 동시출현 용어의 13단어 단어인접탐색 기법을 적용한 경우 268편(96.7%)으로 매칭률이 향상되었다. 본 연구를 통해 자연어 검색에 있어서 검색효율을 향상시키는 수단으로 검색용 시소러스를 사용하면 색인비용에 대한 부담이 적고, 통제어의 망라적 장점과 자연어가 가지는 용어의 특정성을 유지할 수 있음을 증명하였다. 또한 불리안 검색보다는 단어인접탐색 기법을 활용하면 정확률을 높일 수 있어 검색 효율성이 향상됨을 알 수 있었다.

의료서비스를 위한 키워드와 문서의 연관성 향상을 위한 LSTM모델 설계 (LSTM Model Design to Improve the Association of Keywords and Documents for Healthcare Services)

  • 김준겸;서진범;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.75-77
    • /
    • 2021
  • 현재 다양한 검색엔진들이 사용되고 있다. 검색엔진은 메타태그 정보를 기본으로 크롤링, 색인생성, 검색 결과 출력의 3단계를 거치며, 사용자가 원하는 자료의 검색을 도와준다. 그러나 키워드를 기반으로 검색해서 얻은 방대한 문서가 관련이 없거나 적은 문서일 경우도 많다. 이러한 문제점 때문에 검색 결과에서 내용을 파악하여 정확도를 분류를 해야 하는 번거로운 일이 발생하게 된다. 다양한 검색엔진을 통해 추출된 결과의 경우 검색엔진의 인덱스는 주기적으로 업데이트 되지만 가중치에 대한 기준과 업데이트 주기는 검색엔진마다 다르고 검색 순위 산정 기준이 서로 다르기 때문에 동일한 키워드를 검색어로 입력하고도 서로 다른 검색 순위를 보여주는 단점을 가지고 있다 따라서 본 논문에서는 기존 검색엔진 대신 사용자가 입력한 키워드와 문서의 연관성을 추출하여 사용자가 찾고자 하는 키워드를 입력했을 때 키워드와 문서의 연관성을 향상 시킬 수 있는 LSTM모델을 설계하고자 한다.

  • PDF

한국어 시소러스를 이용한 웹 문서 추천 에이전트 (A Web-document Recommending System using the Korean Thesaurus)

  • 서민혜;이성욱;서정연
    • 한국정보통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.103-109
    • /
    • 2009
  • 우리는 사용자의 행동을 관찰하고 학습하여 사용자 대신에 문서를 수집 분석함으로써 사용자에게 필요한 정보만을 추출하여 제공하는 웹 문서 추천 에이전트 시스템을 개발한다. 또한 우리는 이 시스템에 한국어 시소러스를 이용한 질의어 확장 방법의 적용을 제안한다. 한국어 시소러스를 이용한 질의어 확장을 위해, 새로운 웹 문서를 검색하기 위해 생성된 질의어를 한국어 시소러스를 통하여 그 하의어들을 찾아 후보 집합을 생성해 주고, TF-IDF와 상호 정보량을 이용하여 후보 집합 안에 있는 단어 들 중에서 질의어와 가장 많은 관련 정보를 가지고 있는 단어를 추출함으로써 질의어를 확장해 주었다. 확장되지 않은 질의어만으로 웹 문서를 추천하게 되면 추천된 웹 문서의 수는 극히 제한적이지만, 질의어를 확장함으로써 보다 더 많은 유용한 웹 문서를 사용자에게 추천 및 제공 할 수 있다.

의미 기반의 질의 분석 및 확장 (Question Analysis and Expansion based on Semantics)

  • 신승은;박희근;서영훈
    • 한국콘텐츠학회논문지
    • /
    • 제7권7호
    • /
    • pp.50-59
    • /
    • 2007
  • 본 논문에서는 효율적인 정보검색을 위한 의미 기반의 질의 분석 및 확장을 제안한다. 기존의 정보검색 시스템들은 사용자 질의로 자연언어 질의를 허용하고 있지만 단순히 명사 단어의 색인어를 사용자 질의로부터 추출하여 정보검색에 활용하기 때문에 사용자의 질의 의도를 반영한 정보검색을 하지 못한다. 이러한 문제점을 해결하기 위해서 의미 기반 질의 분석 및 확장은 사용자의 질의를 의미적으로 분석하여, 질의유형을 결정하고 의미 자질들을 추출한다. 추출된 의미 자질들과 정답을 표현하기 위해 사용되는 구문구조를 이용하여 사용자 질의를 확장한다. 또한 확장된 질의를 이용하여 정답을 포함하는 관련문서들을 정보검색 결과의 상위에 랭크시킬 수 있는 방법을 제시한다. 비교적 짧지만 사용자의 질의 의도를 충분히 표현하고 있는 자연언어 질의에 대한 의미 기반의 질의 분석 및 확장을 통해 정보검색의 정확률을 향상시킬 수 있음을 보였다.