• Title/Summary/Keyword: 검색가중치

Search Result 401, Processing Time 0.028 seconds

Relevance Feedback Experiments for Korean Information Retrieval Systems (한국어 정보검색 시스템을 위한 다양한 적합성 피드백 방법의 실험)

  • Park, Su-Hyeon;Gwon, Hyeok-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.5
    • /
    • pp.682-691
    • /
    • 1999
  • 정보검색 시스템의 검색 효율 향상을 위해서 다양한 적합성 피드백 방법이 개발되었다. 그러나 한국어 정보검색 시스템을 위한 적합성 피드백에 대한 연구는 거의 이루어지지 않은 실정이다. 이 논문에서는 기존에 개발된 적합성 피드백 방법을 한국어 정보 시스템에 적용하여 검색 효율을 비교하고, 새로운 적합성 피드백 방법을 개발 적용하여 기존의 방법들과 검색 효율을 비교분석하였다. 적합성 피드백은 원질의문을 확장할 단어 선택과 선택된 단어 가중치 부여로 이루어진다. 원질의문이 입력되면 검색된 적합문서에서 원질의문을 단어와 밀접한 관계가 있는 단어를 선택하기 위하여 가중치를 부가한후, 원질의문에 추가하여 질의문을 확장한다. 이 논문에서는 원질의문 확장을 위한 단어 선택과 단어 가중치 부여를 위해 3가지 값을 사용한다. 첫째, TF는 적합문서 내의 단어 빈도의 총합이다. 둘째, idf는 해당 문서집단의 역문헌빈도이다. 셋째, r/R은 검색된 적합문서 중에서 해당단어가 있는 적합문서의 비율을 나타낸다. TF와 idf는 정보검색 시스템에서 일반적으로 사용되고있는 값이고 r/R은 이 논문에서 제안한 새로운 값이다.

A relevance-based pairwise chromagram similarity for improving cover song retrieval accuracy (커버곡 검색 정확도 향상을 위한 적합도 기반 크로마그램 쌍별 유사도)

  • Jin Soo Seo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.200-206
    • /
    • 2024
  • Computing music similarity is an indispensable component in developing music search service. This paper proposes a relevance weight of each chromagram vector for cover song identification in computing a music similarity function in order to boost identification accuracy. We derive a music similarity function using the relevance weight based on the probabilistic relevance model, where higher relevance weights are assigned to less frequently-occurring discriminant chromagram vectors while lower weights to more frequently-occurring ones. Experimental results performed on two cover music datasets show that the proposed music similarity improves the cover song identification performance.

Implement of Relevance Feedback in "MIRINE" Information Retrieval System ("미리내" 정보검색 시스템에서 Relevance Feedback 구현)

  • Park, Su-Hyun;Park, Se-Jin;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.65-71
    • /
    • 1997
  • 이 논문은 부산대학교 전자계산학과 인공지능 연구실에서 개발한 정보검색 시스템 "미리내"의 적합성 피드백 방법을 분석하고, 그 방법들의 검색 효율을 비교 분석하였다. "미리내"에서 질의문은 자연언어 질의문을 사용하고 재검색을 위한 적합성 피드백은 원질의문에서 검색된 문서 중 이용자가 직접 선택한 적합 문서에서 추출한다. 적합성 피드백은 크게 단어 확장(Term Expansion)을 위한 단어 선택 방법과 추가될 단어에 가중치를 부여하는 단어 가중치 부여(Term Weighting)의 2가지 요소로 이루어진다. 단어 선택을 위해서는 적합 문서에 나타난 단어 빈도합(tf), 역문헌빈도(idf), 적합 문서 중에서 해당 단어가 있는 적합 문서의 비율(r/R) 등의 정보를 이용한다. 단어 가중치 부여 방법으로는 정규화 또는 코사인 함수를 이용하여 부여하였다. 단어확장에는 tfidf가 tfidf(r/R)보다 정확도 면에서 나은 향상율을 보였으나, 30위 내 검색된 적합문서의 수를 비교해 보았을 때 tfidf(r/R)의 정확도가 높았다. 단어 선택 방법에서 계산된 값을 정규화하여 가중치를 부여하였을 때 보다 코사인 함수를 이용하여 가중치를 부여하였을 때 정확도가 높았다. 실험은 KT-Set 2.0 (4391 건), 동아일보 96 년 신문기사(70459 건)를 대상으로 수행하였다.

  • PDF

A Study of Indexing Methods with weight-value of Web document (가중치를 가지는 웹문서 색인기법에 관한 연구)

  • Kim, Jong-Young;Kim, Cheol-Su
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11c
    • /
    • pp.2459-2462
    • /
    • 2002
  • 검색된 문헌들에 대한 항해 시간을 줄이기 위해서 검색된 문헌들의 문헌 순위화가 필수적이다. 문헌 순위화를 위해서는 문헌 순위화를 위한 순위화 정보가 필요하다. 본 논문에서는 검색된 문헌들에 대한 순위화를 보다 효율적으로 수행하기 위한 정보를 제공하기 위하여 HTML 문서에 대한 색인 과정에서 다양한 가중치를 가지는 색이어 추출 방법에 관하여 연구하였다. 웹문서들은 태그로 이루어지며 중요한 색인어들은 특정 태그 속에 포함되어 있다는 것에 착안하여 색인어의 중요도에 영향을 줄 수 있는 태그를 선별하고, 선별된 태그들에 대해 휴리스틱 정보를 이용하여 중요도를 부여한 후 선별된 태그에 영향을 받는 문장들에서 추출된 색인어에 대하여 가중치를 부여하는 방법을 이용하였다. 색인어 추출을 형태소 분석기를 이용하였다. 색인어들이 다양한 가중치를 가지므로 검색 과정에서 검색된 문헌들에 대하여 효율적인 순위화가 가능하여 관련 문헌을 보다 빠르게 찾을 수 있는 환경을 제공할 수 있다.

  • PDF

Improving Performance of Search Engine By Using WordNet-based Collaborative Evaluation and Hyperlink (워드넷 기반 협동적 평가와 하이퍼링크를 이용한 검색엔진의 성능 향상)

  • Kim, Hyun-Gil;Kim, Jun-Tae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.369-380
    • /
    • 2004
  • In this paper, we propose a web page weighting scheme based on WordNet-based collaborative evaluation and hyperlink to improve the precision of web search engine. Generally search engines use keyword matching to decide web page ranking. In the information retrieval from huge data such as the Web, simple word comparison cannot distinguish important documents because there exist too many documents with similar relevancy. In this paper, we implement a WordNet-based user interface that helps to distinguish different senses of query word, and constructed a search engine in which the implicit evaluations by multiple users are reflected in ranking by accumulating the number of clicks. In accumulating click counts, they are stored separately according to lenses, so that more accurate search is possible. Weighting of each web page by using collaborative evaluation and hyperlink is reflected in ranking. The experimental results with several keywords show that the precision of proposed system is improved compared to conventional search engines.

Applying the Weight for Query Length and the Frequency of Query Term to Information Retrieval (정보 검색에서 질의문 길이에 대한 가중치와 질의어 출현 빈도 가중치 적용)

  • Kang, Seung-Shik;Chun, Young-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.763-766
    • /
    • 2005
  • 정보검색 시스템에서 긴 문장으로 질의가 들어올 경우 질의문의 길이와 시스템이 정답이라고 판단한 문서에서 질의문을 분석하여 추출한 질의어들이 출현한 빈도수를 가중치로 준다면 좀더 정확한 결과를 보일 수 있을 것이라 가정하였다. 즉 벡터 모델을 이용하여 문서와 질의와의 유사도를 계산하고 여기에 질의문의 길이에 대한 가중치와 유사도를 이용하여 얻은 결과 문서에서 질의문을 분석하여 얻은 질의 용어들의 출현 빈도에 대한 가중치를 적용하는 방법을 제안하였다.

  • PDF

Indexing Model and Weight Assignment on Keywords for Contents based Retrieval in XML Documents (XML 문서의 내용기반 검색을 위한 인덱싱 모델 및 색인어의 가중치 부여)

  • 한예지;한창우;서동혁;김수희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.103-105
    • /
    • 2004
  • 본 논문에서는 XML 문서의 내용을 효율적으로 검색하기 위해 필요한 메타데이터의 스키마몰 개발하고 이론 바탕으로 구축되는 내용기반 인덱싱 모델을 제안한다. 제안하는 내용기반 인덱싱 모델은 엘리먼트타입에 따라 랭킹 검색과 불리언 검색을 지원한다. 랭킹 검색 결과의 재현도와 정확도를 높이기 위해, 검색 결과의 출력 기준 노드가 리프 노드와 내부 노드인 경우를 구별하여 색인어에 대한 가중치를 부여하고, 이를 이용하여 질의와 엘리먼트간의 유사도를 계산하는 방법을 제안한다.

  • PDF

Improvement of Retrieval Performance Using Adaptive Weighting of Key Frame Features (키 프레임 특징들에 적응적 가중치 부여를 이용한 검색 성능 개선)

  • Kim, Kang-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Video retrieval and indexing are performed by comparing feature similarities between key frames in shot after detecting a scene change and extracting key frames from the shot. Typical image features such as color, shape, and texture are used in content-based video and image retrieval. Many approaches for integrating these features have been studied. However, the issue of these approaches is how to appropriately assign weighting of key frame features at query time. Therefore, we propose a new video retrieval method using adaptively weighted image features. We performed computer simulations in test databases which consist of various kinds of key frames. The experimental results show that the proposed method has better performance than previous works in respect to several performance evaluations such as precision vs. recall, retrieval efficiency, and ranking measure.

Weighting Assignments Paper Retrieval Model Based On Ontology (온톨로지 기반 가중치 부여 논문 검색 모델)

  • Park, Hyun-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.328-331
    • /
    • 2007
  • 많은 연구원들이 자신의 연구 과제를 수행함에 있어 선행 연구 자료로 참고하는 것이 관련 주제에 관한 학술 자료이다. 현재 많은 학교와 기관 그리고 단체에서 관련 학술 자료를 발간하고 있으며 이를 참조하는 방식도 다양하다. 그러나 학술 자료를 참조함에 있어 단어 기반 검색이 사용되고, 발간된 자료의 양이 방대해짐에 따라 사용자가 원하는 정보를 참조하는 데 많은 어려움이 따른다. 본 논문은 이러한 기존 학술 자료 검색 방법을 보완하기 위하여 온톨로지를 기반으로 하는 가중치 부여 논문 검색 모델을 제안한다. 제안한 모델은 논문 관련 정보를 온톨로지로 구축하고, 검색 문서에 가중치를 부여하는 순위화 알고리즘을 적용한 것이다. 이는 기존 유사도 적용 기법에 시멘틱 개념을 적용한 것으로 효율적이고 정확한 논문 검색을 보장한다.

  • PDF

Weighted N-Gram Indexing for Image Search Engine (영상검색엔진을 위한 가중치 N-Gram색인 방법)

  • 이상열;정성호;황병곤
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2002.11a
    • /
    • pp.412-416
    • /
    • 2002
  • 멀티미디어 검색 시스템들은 아직까지 내용 기발에 의한 검색기술이 실용적으로 쓰일 만큼 높은 성능을 보이고 있지 않기 때문에 텍스트에 의한 검색만을 지원하고 있는 실정이다. HTML 문서에 나타나는 텍스트 중 이미지 아래에 붙은 표제나 이미지 링크에 붙어 있는 텍스트를 골라내어 이미지의 색인 정보로 이용하여 텍스트를 추출하는 기법을 제안하였다. 텍스트를 추출하기 위해 N-Gram 색인 방법을 사용하였으며 한편 검색 효율을 높이기 위해서 질의 의도가 큰 단어에 가중치를 부여하였다.

  • PDF