• Title/Summary/Keyword: 검사로봇

Search Result 247, Processing Time 0.021 seconds

Development of Differentially Driven Inpipe Inspection Robot for Underground Gas Pipeline (지하 매설 가스배관용 차동 구동형 배관검사 로봇의 개발)

  • No, Se-Gon;Ryu, Seong-Mu;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2019-2029
    • /
    • 2001
  • Up to now a wide variety of researches on inpipe inspection robots have been introduced, but it still seems to be difficult to construct a robot providing mobility sufficient to navigate inside the complicated configuration of underground pipelines. This paper introduces a robot called MRINSPECT IV(Multifunctional Robotic Crawler for inpipe inSPECTion IV) for the inspection of urban gas pipelines with a nominal 4-inch inside diameter. The proposed robot can freely move along the basic configuration of pipelines such as along horizontal or vertical pipelines. Moreover it can travel along reducers, elbows, and steer in the branches by modulating the speeds of driving modules. Especially, its capability for steering in tile three-dimensional pipeline configuration has a competative edge over the other ones and provides excellent mobility in navigation. Its critical points in the design and construction are introduced and results of experiments are given.

Development of Inpipe Inspection Robot System (배관 검사 로봇 시스템 개발)

  • Baek, Sang-Hun;Ryu, Seong-Mu;No, Se-Gon;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2030-2039
    • /
    • 2001
  • Recently, various inpipe inspection robots are developed and its effective values are increased in industrial use. However, it is so difficult to make a inpipe inspection robot system which has flexible mobility and accuracy of inspection in pipelines. Especially, it is very important to know the exact crack position. In this paper, we are to present a lately developed inpipe inspection robot system which can resolve the above Problems. The robot is configured as an articulated structure like a snake. Two active driving vehicles are located in front and rear of the inspection robot respectively and passive modules such as a nondestructive testing module and a control module are chained between the active vehicles. Special feature of the robot system is a ground interface, which is able to show informations of robot and pipelines. By using this, so called virtual map in this paper, user is able to know the pipelines'feature and crack position.

Development of Inpipe Inspection Robot System for Underground Gas Pipelines (지하매설 가스배관 내부검사용 로봇시스템 개발)

  • 최혁렬;류성무;백상훈;조성휘;송성진;신현재;전재욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.121-129
    • /
    • 2000
  • The robotic automation in NonDestructive Testing(NDT) is a promising field of research and it helps to expand the applications of NDT enormously. Especially, in the case of pipelines which are widely used in various industrial facilities, it is required to secure adequate ways of inspection in the usual maintenance activitites. In this paper, we present a robot system for inpipe inspection of underground urban gas pipelines. The robot is configured as an articulated structure like a snake with a tether cable. Two active driving vehicles are located in front and rear of the system, respectively and passive modules such as a NonDestructive Testing module and a control module are chained between the active vehicles. The proposed system has outstanding mobility by employing a new steering mechanism called Double Active Universal Joint, which makes it possible to cope with complicated configurations of underground pipelines. Characteristic features of the system are described and the construction of the system is briefly outlined.

  • PDF

Unified Approach to Path Planning Algorithm for SMT Inspection Machines Considering Inspection Delay Time (검사지연시간을 고려한 SMT 검사기의 통합적 경로 계획 알고리즘)

  • Lee, Chul-Hee;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.788-793
    • /
    • 2015
  • This paper proposes a path planning algorithm to reduce the inspection time of AOI (Automatic Optical Inspection) machines for SMT (Surface Mount Technology) in-line system. Since the field-of-view of the camera attached at the machine is much less than the entire inspection region of board, the inspection region should be clustered to many groups. The image acquisition time depends on the number of groups, and camera moving time depends on the sequence of visiting the groups. The acquired image is processed while the camera moves to the next position, but it may be delayed if the group includes many components to be inspected. The inspection delay has influence on the overall job time of the machine. In this paper, we newly considers the inspection delay time for path planning of the inspection machine. The unified approach using genetic algorithm is applied to generates the groups and visiting sequence simultaneously. The chromosome, crossover operator, and mutation operator is proposed to develop the genetic algorithm. The experimental results are presented to verify the usefulness of the proposed method.

A development of a general purposed control system of robot end-effector for inspection and maintenance of steam generator heat pipe (증기발생기전열관의 검사정비로봇용 엔드이펙터의 범용 제어시스템 개발)

  • Park, Ki-Tae;Kim, Seon-Jin;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • The general purposed control system for driving a motion of many different typed robot end-effector, which consists of a controller based on ARM Cotex M3-11017 MCU and an application software for generating a motion of end-effector, was developed. Experimental results show that a positioning error is nearly negligible and a repeatability error is 0.04%. Accordingly the developed control system can be applied practically to actuate a robot end-effector for inspection and maintenance of steam generator heat pipe in nuclear power plant.

Development of Self-Driven Pneumatic Robot for Boresonic Examination of Turbine Rotor (터빈로터 중심공 검사용 자기주행 공압형 로봇 개발)

  • Kang, Baejun;An, Myungjae;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • This study presents a new principle for driving the robot aimed at reducing the position error for the boresonic examination of turbine rotor. The conventional method of inspection is performed by installing manipulator onto the flange of the turbine rotor and connecting a pipe, which is then being pushed into the bore. The longer the pipe gets, the greater sagging and distortion appear, making it difficult for the ultrasonic sensor to contact with the internal surface of the bore. A pneumatic pressure will ensure the front or rear feet of the robot in close contact with the inner wall to prevent slipping, while the ball screw on the body of the robot will rotate to drive it in the axial direction. The compression force required for tight contact was calculated in the form of a three-point support, and a static structural simulation analysis was performed by designing and modeling the robot mechanism. The driving performance and ultrasonic detection ability have been tested by fabricating the robot, the test piece for ultrasonic calibration and the transparent mock-up for robot demonstration. The tests have confirmed that no slipping occurs at a certain pneumatic pressure or over.

Spot detection of Optical lens using the image processing (영상 처리에 의한 광학렌즈 이물 검출)

  • Song, Young-Jun;Kim, Dong-Woo;Kim, Nam;Ahn, Jae-Hyeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.73-75
    • /
    • 2009
  • 본 논문은 영상 처리에 의해 광학렌즈의 먼지 및 이물질의 유무를 검출하기 위한 방법을 제안한다. 현재 사용되고 있는 비접촉 검사용 비젼 시스템은 마스크 기법을 활용하여 기준 영상에 비해 어느 정도의 잡음이 있는지를 검사한다. 그러나 조명의 정도, 반사 및 이물질의 유형에 따라 검출하기가 어렵다. 이를 해결하기 위해 파란색 LED 광원을 수평축에 설치하여 양각 부분의 에지들을 더욱 강조하는 시스템을 구현하였다. 이물질 검출은 간단한 소벨 에지 마스크를 사용하고 이물질의 크기에 따라 먼지 및 이물질에 대한 판단을 결정하였다. 크기 및 색상이 틀린 렌즈를 사용하여 실험한 결과 일반 영상에서 검출한 것보다 파란색 LED 광원과 영상처리에 의해 잡음 및 이물질을 강건하게 검출하여 렌즈의 자동 검사용 로봇 비젼 시스템에 적용이 가능하다.

  • PDF

The Development of Automatic Inspection System for Flaw Detection in Welding Pipe (배관용접부 결함검사 자동화 시스템 개발)

  • Yoon Sung-Un;Song Kyung-Seok;Cha Yong-Hun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.87-92
    • /
    • 2006
  • This paper supplements shortcoming of radioactivity check by detecting defect of SWP weld zone using ultrasonic wave. Manufacture 2 stage robot detection systems that can follow weld bead of SWP by method to detect weld defects of SWP that shape of weld bead is complex for this as quantitative. Also, through signal processing ultrasonic wave defect signal system of GUI environment that can grasp easily existence availability of defect because do videotex compose. Ultrasonic wave signal of weld defects develops artificial intelligence style sightseeing system to enhance pattern recognition of weld defects and the classification rate using neural net. Classification of weld defects that do fan Planar defect and that do volume defect of by classify.

A Study on Construction of Automatic Inspection System for Welding Flaws (용접결함 검사 자동화 시스템 구축에 관한 연구)

  • Kim, Chang-Hyun;Yu, Hong-Yeon;Hong, Sung-Hoon;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.37-42
    • /
    • 2007
  • The purpose of this research is stability estimation of plant structure through classification and recognition about welding flaw in SWP(Spiral Welding Pipe). And, In this research, we used nondestructive test based on ultrasonic test as inspection method, and made up 2-axes inspection robot in order to control of ultrasonic probe on the SWP surface, and programmed to image processing and probabilistic neural network(PNN) classifying code by MATLAB programming. Through this process, we proved efficiency on the system of SWP stability Estimation.