• Title/Summary/Keyword: 건축표면

Search Result 466, Processing Time 0.026 seconds

Analysis of Urban Heat Island Effect Using Information from 3-Dimensional City Model (3DCM) (3차원 도시공간정보를 이용한 도시열섬현상의 분석)

  • Chun, Bun-Seok;Kim, Hag-Yeol
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2010
  • Unlike the previous studies which have focused on 2-dimensional urban characteristics, this paper presents statistical models explaining urban heat island(UHI) effect by 3-dimensional urban morphologic information and addresses its policy implications. 3~dimensional informations of Columbus, Ohio arc captured from LiDAR data and building boundary informations are extracted from a building digital map, Finally NDV[ and temperature data are calculated by manipulating band 3, band 4, and thermal hand of LandSat images. Through complicated data processing, 6 independent variables(building surface area, building volume, height to width ratio, porosity, plan surface area) are introduced in simple and multiple linear regression models. The regression models are specified by Box-Tidwell method, finding the power to which the independent variable needs to raised to be in a linearity. Porosity, NDVI, and building surface area are carefully chosen as explanatory variables in the final multiple regression model, which explaining about 57% of the variability in temperatures. On reducing UHI, various implications of the results give guidelines to policy-making in open space, roof garden, and vertical garden management.

Performance Evaluation of Concrete using Performance Improving-type Polycarboxylic acid-based Admixture (성능개선형 폴리카르본산계 혼화제를 사용한 콘크리트의 성능평가에 관한 실험적 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae;Gong, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.445-451
    • /
    • 2017
  • Because of the supply-demand problem of aggregate, recently, the construction sites using 100% crushed sand are increasing and the use of low quality aggregate such as farmland sand is increasing too. When the low quality aggregate is used, the various quality defect of concrete such as the strength reduction, the increase of shrinkage and bleeding can be occurred. Therefore, in this study, the performance improvement PC admixture was developed to minimize the quality defect of plain concrete of basement parking area, when the low quality aggregate was used at the plain concrete of basement parking area. The slump loss to elapsed time test, the compressive strength test, the bleeding test and the drying shrinkage test were carried out.

Carbonation Mechanism of Hydrated Cement Paste by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 시멘트 페이스트의 중성화 반응 메커니즘)

  • Park, Jeong-Won;Kim, Ji-Hyun;Lee, Min-Hee;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.403-412
    • /
    • 2018
  • Recently, needs for utilization of recycled aggregate have been increasing. However, its utilization has been limited due to its high alkalinity, which mostly came from the unremoved cement paste particles that were attached at the surface of recycled aggregate. Various efforts has been made to reduce its alkalinity by using $CO_2$, but currently available methods that uses $CO_2$ generate the problem with pH recovery. Considering the fact that supercritical $CO_2$ ($scCO_2$) can provide more rapid carbonation of cement paste than by normal $CO_2$, $scCO_2$ was utilized in this work. The reaction between $scCO_2$ and hydrated cement paste has been systematically evaluated. According to the results, it was found that powder type showed higher carbonation compared to that of cube specimens. It seems the carbonation by $scCO_2$ has occurred only at the surface of the specimen, and therefore still showed some amount of $Ca(OH)_2$ calcium aluminates after reaction with $scCO_2$. With powder type specimen, all $Ca(OH)_2$ was converted into $CaCO_3$. Moreover, additional calcium that came from both calcium aluminate hydrates and calcium silicate hydrates reacted with $scCO_2$ to form $CaCO_3$. After carbonation with $scCO_2$, the powder type specimen did not show pH recovery, but cube specimens did show due to the presence of portlandite.

Flame Retardant and Weather Proof Characteristic of Dan-Chung Treated Wooden by Flame Retardant Performance (방염처리 방법에 따른 단청목재의 방염 및 내후특성)

  • Park, Cheul-Woo;Hong, Sang-Wan;Lee, Jong-Kyun;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.122-130
    • /
    • 2013
  • One of recent methods to protect wooden cultural assets from fire, there is the flame retardation which is applied directly to wood and it is to prevent fire through securing flame resistance for the material and delaying combustion when failed fire in advance and then to gain time for people in the room to evacuate and it has same goal with the Korean Fire Service Act by protecting life and property. However, in case of spraying flame retardant on the colored surface of the wooden cultural assets, there are continuous problems of decoloration, efflorescence and water absorbtion after sometime and accordingly there increases danger of damages of cultural assets. So when treating with flame retardant on wooden cultural assets, there has to be no problems on dancheong after sometime and securing sustainable methods for flmae retardation should be preceded. Accordingly, this study aims to provide basic sources for selecting proper flame retardation methods by evaluating and analyzing flame retardation capabilities according to types of flame retardants which are frequently used nowadays and spraying them on the dancheong-painted surface and confirming if there is no problem on the dancheong and wood after sometime and if flame retardation effect is sustainable with its quality and capability through precise analysis.

A Study on the Selection and Modification of Ground Motion Based on Site Response Analysis (부지응답해석에 기반한 지반운동 선정 및 보정에 관한 고찰)

  • Hwang, Jung-Hyun;Mauk, Ji-Wook;Son, Hyeon-Sil;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • In the recent seismic design code KDS 41 17 00, selection and modification procedures of ground motions which are used for nonlinear dynamic analyses were adopted. However, its practical applications are still limited due to the lack of literatures. This paper introduces case studies which used site-response analyses to select and modify ground motions for nonlinear dynamic analyses. Based on the case studies, design criterion for site-response analyses were reviewed thoroughly in the viewpoint of practical applications. It was found that design requirements related with bedrock motions are too conservative that ground motions are selected and modified in the excessive manner. It is especially true for low-rise building structures with period ranges including acceleration-sensitive regions. Even though surface motions have shown appropriate responses, such building structures have to re-select and re-modify ground motions based on pre-analysis procedures rather than post-ones according to the current seismic design code. Also, it was observed that building structures with soft soils under strong ground motions need more comprehensive investigations on soil properties and efficient analysis methods in order to perform site-response analyses. This is due to the fact that lack of reliabilities on soil properties and analysis methods could result in unstable site-responses.

The Effect of Recycled Aggregate Produced by the New Crushing Device with Multi-Turn Wings and Guide Plate on the Mechanical Properties and Carbonation Resistance of Concrete (다중 회전 날개 및 가이드 판 설치 파쇄장치를 통해 제작된 순환골재가 콘크리트의 역학적 특성 및 탄산화 저항성에 미치는 영향)

  • Cho, Sung-Kwang;Kim, Gyu-Yong;Eu, Ha-Min;Kim, Yong-Rae;Lee, Chul-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • In this work, multi-turn wings and guide plates are installed on recycled aggregate crushing devices to improve existing low recycled aggregate quality. Simulation analysis to evaluate the crushing efficiency of the new device shows enhanced crushing efficiency since the installation of guide plates shreds most of the inputs inside the crushing drum, and the multi-turn wings and guide plates induce rebound and circulation of the aggregate. Through this, the new device was found to be more economical and efficient than the existing recycled aggregate crushing device. Also, the amount of cement paste and mortar attached to the surface of the aggregate was smaller than that of the existing recycled aggregate, and it was found that the mechanical properties and elastic modulus deterioration were reduced. However, the carbonation resistance of concrete was not improved to the level of natural aggregates due to the remaining tiny cement paste and mortar on the surface of the new recycled aggregate. Therefore, it is deemed necessary to further research and experiment such as device improvement or binder development to reduce durability degradation of concrete mixed with new recycled aggregate.

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

Seismic Analysis of Ground for Seismic Risk Assessment of Architectural Heritage in Seoul (건축문화재 지진 위험도 평가를 위한 지반의 내진해석 : 서울지역을 중심으로)

  • Han, Jung-Geun;Keon, Seong-Kon;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.133-141
    • /
    • 2013
  • This paper describes the earthquake risk evaluation of 15 sites of architectural heritages, which are considered ground conditions of sites in Seoul. In order to acquire the input data of earthquake response analysis, surface wave exploration was performed at the site. Earthquake response analysis and 3D earthquake safety evaluation were carried out under the base of scenario earthquakes. Ground displacements of areas, which are located on architectural heritages, are showed about 0.5 mm ~ 9.7 mm, and it was analyzed to small affected by earthquakes. In case of Naksungdae three-story stone pagoda, ground displacement is similar to the others. However, displacement of three-story stone pagoda with granite is 30 mm on the top, because the greatest occurrence of that is caused by stress release at seismic wave effect.

Line Laser Image Processing for Automated Crack Detection of Concrete Structures (콘크리트 구조물의 자동화 균열탐지를 위한 라인 레이저 영상분석)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.147-153
    • /
    • 2018
  • Cracking in concrete structure must be examined according to appropriate methods, to ensure structural serviceability and to prevent structural deterioration, since cracks opened wide for a long time expedite corrosion of rebar. A site investigation is conducted in a regular basis to monitor structural deterioration by tracking growing cracks. However, the visual inspection are labor intensive. and judgment are subject. To overcome the limit of the on-site visual investigation image processing for identifying the cracks of concrete structures by analyzing 2D images has been developed. This study develops a unique 3D technique utilizing a line laser and its projection image onto concrete surfaces. Automated process of crack detection is developed by the algorithms of automatizing crack map generation and image data acquisition. Performance of the developed method is experimentally evaluated.

A Study on the Manufacture and Application of UV-Cured Multi-Functional(Anti-Stain/Virus) Coating Compounds for PVC Tile (PVC 바닥상재용 광경화형 복합기능(내오염/항균)성 코팅액의 제조 및 응용에 관한 연구)

  • Yoon, Hyun-Jung;Park, Bo-Ram;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3615-3620
    • /
    • 2010
  • This study is development of UV-cured coating compounds which has more improved anti-stain and anti-biosis, about surface prevention of PVC Tile. We added water-soluble anti-static and anti-microbial agent to the resin. The process has prevented electrostatic and bacterial contagious disease. The result, which added 15wt% of water-soluble anti-static and 1wt% anti-microbial agent and coated with No.12 Bar-coater, coating composition had optimum surface property. It appear electric resistance($10^9{\Omega}/cm^2$), anti-stain (Ink Test, Dust Test), anti-biosis (99.99%), and adhesive power(100%).