• Title/Summary/Keyword: 건축시스템

Search Result 2,150, Processing Time 0.028 seconds

Evaluation of Debonding Defects in Railway Concrete Slabs Using Shear Wave Tomography (전단파 토모그래피를 활용한 철도 콘크리트 궤도 슬래브 층분리 결함 평가)

  • Lee, Jin-Wook;Kee, Seong-Hoon;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • The main purpose of this study is to investigate the applicability of the shear wave tomography technology as a non-destructive testing method to evaluate the debonding between the track concrete layer (TCL) and the hydraulically stabilized based course (HSB) of concrete slab tracks for the Korea high-speed railway system. A commercially available multi-channel shear wave measurement device (MIRA) is used to evaluate debonding defects in full-scaled mock-up test specimen that was designed and constructed according to the Rheda 200 system. A part of the mock-up specimen includes two artificial debonding defects with a length and a width of 400mm and thicknesses of 5mm and 10mm, respectively. The tomography images obtained by a MIRA on the surface of the concrete specimens are effective for visualizing the debonding defects in concrete. In this study, a simple image processing method is proposed to suppress the noisy signals reflected from the embedded items (reinforcing steel, precast sleeper, insert, etc.) in TCL, which significantly improves the readability of debonding defects in shear wave tomography images. Results show that debonding maps constructed in this study are effective for visualizing the spatial distribution and the depths of the debondiing defects in the railway concrete slab specimen.

Application and development of a machine learning based model for identification of apartment building types - Analysis of apartment site characteristics based on main building shape - (머신러닝 기반 아파트 주동형상 자동 판별 모형 개발 및 적용 - 주동형상에 따른 아파트 개발 특성분석을 중심으로 -)

  • Sanguk HAN;Jungseok SEO;Sri Utami Purwaningati;Sri Utami Purwaningati;Jeongseob KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.55-67
    • /
    • 2023
  • This study aims to develop a model that can automatically identify the rooftop shape of apartment buildings using GIS and machine learning algorithms, and apply it to analyze the relationship between rooftop shape and characteristics of apartment complexes. A database of rooftop data for each building in an apartment complex was constructed using geospatial data, and individual buildings within each complex were classified into flat type, tower type, and mixed types using the random forest algorithm. In addition, the relationship between the proportion of rooftop shapes, development density, height, and other characteristics of apartment complexes was analyzed to propose the potential application of geospatial information in the real estate field. This study is expected to serve as a basic research on AI-based building type classification and to be utilized in various spatial and real estate analyses.

Examination of Lateral Torsional Bucling Strength by Increasing the Warping Strength of I-Section Plate Girder with Concrete Filled Half Pipe Stiffener (콘크리트 충전 반원기둥보강재가 적용된 플레이트 거더의 뒤틀림 강도)

  • Cheon, Jinuk;Lee, Senghoo;Baek, Seungcheol;Kim, Sunhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.577-585
    • /
    • 2023
  • Lateral torsional buckling causessafety accidentssuch as collapse accidents during erection. Therefore, anaccurate safety designshould be conducted. Lateral torsional buckling canbe prevented by reinforcing the end orreducing the unbraced length. The method ofreducing the unbraced length by installing a crossframe has high material and installation costs and low maintenance performance.In addition, structuralsafety may be deteriorated due to cracks. The end reinforcement method using Concrete Filled Half Pipe Stiffeneris a method ofreinforcing the end of a plate girder using a stiffenerin the form of a semi-circular column. This method increasesthewarping strength ofthe girder and increasesthe lateral torsional buckling strength.In thisstudy, the effect ofincreasing the warping strengthof plate girders with concrete filled half pipe stiffeners was confirmed. To verify the effect, the results ofthe designequationand the finite element analysis were compared and verified through a experiment. As a result, the plate girderwithCFHPS increased thewarping strengthand confirmed that the lateral torsional buckling strength was increased.

A Study on the Utilization of ESG for Reducing Carbon Emissions in the Building Sector and Development Directions (건물부문의 탄소배출량 절감을 위한 ESG의 활용방안과 발전방향)

  • Sang Duck Moon
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.801-824
    • /
    • 2022
  • Recently, United Nations found that 38% of global carbon emissions are generated in the building sector, surpassing other industries (32%) and transportation (23%), and ESG is actively used as a way to reduce carbon emissions in the building sector, led by overseas advanced countries. In Korea, as the National Pension Service announced "Consider ESG with more than 50% of investment assets" this year, the move to introduce ESG in the building sector is accelerating, centering on construction companies and asset management companies. However, as the domestic ESG evaluation system is still mainly focused on corporate governance and social responsibility, interest in the environmental sector is lagging behind that of advanced countries. As ESG in the building sector is expected to grow rapidly over the next 10 years, I would like to suggest the following development directions. The first is the expansion of the incentive system. In order for the government to successfully implement policies related to ESG in the building sector, incentive system such as tax reduction and building standards should be expanded further than now in addition to negative systems such as rent restrictions and punishment taxes due to regulatory violations. Second, standardized ESG standards are established. Rather than creating an independent Korean ESG standard that is far from global standards, it is necessary to organize the common parts of global standards and evaluation methods and create and provide guidelines in the form of standard textbooks that can be used equally by all stakeholders. Third, it is an effort to link ESG in the building sector with Digital Transformation(DX). This is because actual energy savings and carbon emission reduction can be realized only when the operation method of the building sector, which is operated mainly by manpower, is digitalized and converted to an intelligent way.

Quantitative impacts of climate change and human activities on the watershed runoff variation of the Geum River basin (기후변화 및 인간 활동이 금강 유역의 중권역 유출량 변동에 미치는 영향의 정량적 평가)

  • Oh, Mi Ju;Kim, Dongwook;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.381-392
    • /
    • 2023
  • Precipitation, runoff, and evapotranspiration are changing worldwide due to climate change and human activities. Because watershed runoff is an important component of the hydrological cycle, it is important to investigate the changes in watershed runoff for water resources management. This study collected observed data of runoff, precipitation, temperature, and evapotranspiration in the Geum River basin as well as their synthetic data according to Representative Concentration Pathways (RCP) scenarios, investigated the trend of hydro-meteorological variables using the Mann-Kendall test, and quantitatively evaluated the effects of climate change and human activities on the watershed runoff using the climate elasticity approach and the Budyko framework. The results indicated that the relative contribution of climate change and human activity to changes in runoff varies from region to region. For example, the watershed with the greatest contribution from climate change and human activity were the Yongdam Dam (#3001) basin and the Daecheong Dam (#3008) basin, respectively. Future climate change showed an increase in precipitation and temperature in both RCP 4.5 and 8.5 scenarios, resulting in changes in runoff in the Geum River basin from 44.8% to 65.5%, respectively. We concluded that the effect on watershed runoff can be separated into climate change and human activities, which will be important information in establishing sustainable water resource management plans.

Method of Earthquake Acceleration Estimation for Predicting Damage to Arbitrary Location Structures based on Artificial Intelligence (임의 위치 구조물의 손상예측을 위한 인공지능 기반 지진가속도 추정방법 )

  • Kyeong-Seok Lee;Young-Deuk Seo;Eun-Rim Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.71-79
    • /
    • 2023
  • It is not efficient to install a maintenance system that measures seismic acceleration and displacement on all bridges and buildings to evaluate the safety of structures after an earthquake occurs. In order to maintain this, an on-site investigation is conducted. Therefore, it takes a lot of time when the scope of the investigation is wide. As a result, secondary damage may occur, so it is necessary to predict the safety of individual structures quickly. The method of estimating earthquake damage of a structure includes a finite element analysis method using approved seismic information and a structural analysis model. Therefore, it is necessary to predict the seismic information generated at arbitrary location in order to quickly determine structure damage. In this study, methods to predict the ground response spectrum and acceleration time history at arbitrary location using linear estimation methods, and artificial neural network learning methods based on seismic observation data were proposed and their applicability was evaluated. In the case of the linear estimation method, the error was small when the locations of nearby observatories were gathered, but the error increased significantly when it was spread. In the case of the artificial neural network learning method, it could be estimated with a lower level of error under the same conditions.

Exploring Delays of The Mega Construction Project: The Case of Korea High Speed Railway (대형 건설사업의 공기지연분석: 경부고속철도 건설사업을 중심으로)

  • Han, Seung Heon;Yun, Sung Min;Lee, Sang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.839-848
    • /
    • 2006
  • Korea has become the 5th country to own and operate the high speed railroad in 2004. However, there were many difficulties until Koreans enjoy the first bullet train service with the average hourly speed of 300km. The high speed railroad requires elevated quality standards differently from the traditional railways. In addition to the technical difficulties, the construction project itself was an unpleasant case with huge delays and cost overruns mainly due to the lack of experiences, deficiency of owner$^{\circ}{\O}$s role, and increase of public resistances triggered by environmental concerns. This paper analyzes the reasons for delays on this mega-project. With respect to the characteristics of the whole project level, it is very complicated/linear project, whose total length is around 412 km with the composition of various sections in the route of the railway which have basically different conditions. For that reason, the analysis is performed in both macro and micro level. First, macroscopic analysis is performed to find critical subdivisions in the railway route that induces the significant delay in the opening due date. Then, microscopic analysis is followed to quantify the causes and effects of delays focused on these critical subdivisions in more detailed way. Finally, this paper provides lessons learned from this project to avoid the decisive delays in performing the similar large-scaled projects.

A Guidance Methodology Using Ubiquitous Sensor Network Information in Large-Sized Underground Facilities in Fire (대형 지하시설물에서 화재발생 시 USN정보를 이용한 피난 유도 방안)

  • Seo, Yonghee;Lee, Changju;Jung, Jumlae;Shin, Seongil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.459-467
    • /
    • 2008
  • Because of the insufficiency of ground space, the utilization of underground is getting more and more in these days. Moreover, underground space is being used not only buildings but multipurpose space for movement, storage and shopping. However, ground space has vital weakness for fire compared to ground space. Especially in case of underground shopping center, there are various stuffs to burn and poisonous gas can be exposed on this count when the space is burned. A large number of casualties can be also occurred from conflagration as underground space has closed structures that prevent rapid evacuation and access. Therefore, this research proposes the guidance methodology for evacuation from conflagration in large-sized underground facilities. In addition, suggested methodology uses high technology wireless sensor information from up-to-date ubiquitous sensor networks. Fire information collected by sensors is integrated with existing underground facilities information and this is sent to guidance systems by inducing process. In the end, this information is used for minimum time paths finding algorithm considering the passageway capacity and distance. Also, usefulness and inadequacies of proposed methodology is verified by a case study.

Dynamic Shear Behavior Characteristics of PHC Pile-cohesive Soil Ground Contact Interface Considering Various Environmental Factors (다양한 환경인자를 고려한 PHC 말뚝-사질토 지반 접촉면의 동적 전단거동 특성)

  • Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.5-14
    • /
    • 2024
  • PHC piles demonstrate superior resistance to compression and bending moments, and their factory-based production enhances quality assurance and management processes. Despite these advantages that have resulted in widespread use in civil engineering and construction projects, the design process frequently relies on empirical formulas or N-values to estimate the soil-pile friction, which is crucial for bearing capacity, and this reliance underscores a significant lack of experimental validation. In addition, environmental factors, e.g., the pH levels in groundwater and the effects of seawater, are commonly not considered. Thus, this study investigates the influence of vibrating machine foundations on PHC pile models in consideration of the effects of varying pH conditions. Concrete model piles were subjected to a one-month conditioning period in different pH environments (acidic, neutral, and alkaline) and under the influence of seawater. Subsequent repeated direct shear tests were performed on the pile-soil interface, and the disturbed state concept was employed to derive parameters that effectively quantify the dynamic behavior of this interface. The results revealed a descending order of shear stress in neutral, acidic, and alkaline conditions, with the pH-influenced samples exhibiting a more pronounced reduction in shear stress than those affected by seawater.

How to build an AI Safety Management Chatbot Service based on IoT Construction Health Monitoring (IoT 건축시공 건전성 모니터링 기반 AI 안전관리 챗봇서비스 구축방안)

  • Hwi Jin Kang;Sung Jo Choi;Sang Jun Han;Jae Hyun Kim;Seung Ho Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Purpose: This paper conducts IoT and CCTV-based safety monitoring to analyze accidents and potential risks occurring at construction sites, and detect and analyze risks such as falls and collisions or abnormalities and to establish a system for early warning using devices like a walkie-talkie and chatbot service. Method: A safety management service model is presented through smart construction technology case studies at the construction site and review a relevant literature analysis. Result: According to 'Construction Accident Statistics,' in 2021, there were 26,888 casualties in the construction industry, accounting for 26.3% of all reported accidents. Fatalities in construction-related accidents amounted to 417 individuals, representing 50.5% of all industrial accident-related deaths. This study suggests implementing AI chatbot services for construction site safety management utilizing IoT-based health monitoring technologies in smart construction practices. Construction sites where stakeholders such as workers participate were demonstrated by implementing an artificial intelligence chatbot system by selecting major risk areas within the workplace, such as scaffolding processes, openings, and access to hazardous machinery. Conclusion: The possibility of commercialization was confirmed by receiving more than 90 points in the satisfaction survey of participating workers regarding the empirical results of the artificial intelligence chatbot service at construction sites.