• Title/Summary/Keyword: 건축관계

Search Result 1,051, Processing Time 0.031 seconds

The effect of residential environment satisfaction on elderly depression: The mediating role of physical activity (주거환경만족도가 노년기 우울에 미치는 영향: 신체활동의 매개효과를 중심으로)

  • Koo, Bon Mi;Chai, Choul Gyun
    • 한국노년학
    • /
    • v.39 no.4
    • /
    • pp.781-800
    • /
    • 2019
  • The purpose of this paper is to investigate the association between residential environment satisfaction and elderly depression with a focus on the mediating effect of physical activity. The survey of Living Conditions and Welfare Needs of Korean Older Persons performed in 2017 was used for analysis. Among total 10,299 who aged 65 years or above and participated in survey, only 10,059 people who answered the survey questions by themselves without missing main questions were included in this analysis. Mediation effects were tested with Baron & Kenny(1986) method and Sobel test(Sobel, 1982). As results, first, residential environment satisfaction was negatively associated with elderly depression. Second, residential environment satisfaction was positively related to physical activity. Lastly, it was found that physical activity mediated the relationship between residential environment satisfaction and elderly depression. The results showed that older adults who satisfied in residential environment were more likely to participate in physical activity, and older people who participated in physical activity were less likely to experience depressive symptoms. Based on these results, the paper suggests the importance of subjective satisfaction of residential environment and participation of physical activity for mental health in later life, and some intervention strategies for Aging In Place.

Analysis of Permeability Characteristics for Fly Ash Concrete According to Aggregate Size and Mixing Ratio (골재크기와 배합비에 따른 플라이애시 콘크리트의 투기특성 분석)

  • Eun-A Seo;Do-Gyeum Kim;Chul-Woo Jung;Ho-Jae Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.400-406
    • /
    • 2023
  • In this study, the relationship between the material properties and air permeability characteristics was examined, an experimental method to analyze the air permeability characteristics was presented, and experimental results were derived. The effects of compressive strength and apparent density of hardened concrete on air permeability characteristics were evaluated experimentally. Focusing on the mix proportions used in nuclear power plant concrete structures, concrete test specimens were manufactured and air permeability characteristics were measured according to changes in binder, maximum aggregate size, and water-binder ratio. The apparent density was over 2,400 kg/m3 for the OPC mix and the FA-35 mix, and the air permeability for both mixes were low, in the range of 0.1-0.2 L/min. On the other hand, in the case of the combination of FA-40, FA-45, and FA-M, the apparent density was measured to be less than 2,400 kg/m3 and the air permeability was measured to be more than 0.3 L/min, experimentally verifying that the apparent density is an important factor in air permeability characteristics.

Strength and Thermal Properties of Concrete for Replacement Fine Aggregate with Biochar (잔골재를 바이오차로 치환한 콘크리트의 강도와 열적 특성)

  • Kyoung-Chul Kim;Kwang-Mo Lim;Min-Su Son;Young-Seok Kim;Kyung-Taek Koh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.425-432
    • /
    • 2023
  • In this study, we aim to develop a carbon-reducing concrete technology by incorporating biochar. Performance evaluation experiments were conducted on concrete mixtures containing biochar with insulating and carbon-capturing properties, which are essential for key infrastructure sectors such as construction and tunnels. Concrete mixtures were designed with different biochar incorporation rates of 0 %, 5 %, 10 %, 15 %, and 20 %, as w ell as w ater-to-binder ratios of 0.25, 0.30, 0.35, and 0.40. To assess the physical properties of each mixture, unit weight, total porosity, and permeability were measured, while mechanical properties were determined through the measurement of concrete compressive and flexural strengths. Key factors for enhancing the insulating effect of carbon-reducing concrete containing biochar were identified through regression analysis, indicating a close correlation among biochar incorporation rate, unit weight, concrete strength, and thermal conductivity. It is anticipated that it can be utilized as an insulating material to enhance thermal performance in northern regions with severe winter climates.

An Exploratory Study on the Effect of LCZ Type on Particulate Matter (LCZ 유형이 미세먼지에 미치는 영향에 관한 탐색적 연구)

  • Yeonju Kim;Hansol Mun;Juchul Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.338-352
    • /
    • 2023
  • As of 2019, Korea's fine dust is the most severe among 38 OECD countries, and in the same year, 「the Framework on Disaster and Safety Management」 was revised to define fine dust as a social disaster. Currently, the government is working to achieve its emission reduction goals by preparing a comprehensive fine dust management plan (2022-2023) consisting of a total of five areas, 42 tasks, and 177 detailed tasks. However, it is necessary to come up with measures in consideration of the various spatial characteristics of the city, not just as a source of emission. Therefore, in this study, the shape of the city was classified using the LCZ (Local Climate Zone) classification system into 17 types by building type and land cover type in Busan, and the average annual PM10 and PM2.5 concentration were mapped using the IDW technique. In addition, Fragstats and Moving Window were used to quantify the LCZ classification system. Finally, correlation analysis and regression analysis were conducted to analyze the relationship between the LCZ classification system and PM10 and PM2.5. As a result, it was confirmed that the type of low height of the building and the type of green space with trees had a positive effect on the concentration of PM10 and PM2.5. Therefore, this study is expected to be used as basic data to establish fine dust reduction policies based on efficient spatial planning.

A Study on the Status and Performance of Cultural Heritage in the Demilitarized Zone on the Korean Peninsula (한반도 비무장지대 문화유산의 실태조사 현황과 성과 고찰)

  • HWANGBO Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.2
    • /
    • pp.28-50
    • /
    • 2024
  • A fact-finding survey of the Demilitarized Zone can be said to be a very meaningful academic survey linked to previous index surveys of protected military areas and municipal and excavation surveys of ruins and military sites on Mount Dora. Not a few ruins were first discovered in this survey, and the locations, structures, and restoration artifacts of the previously investigated ruins were confirmed differently, raising the need for a detailed investigation. In particular, it is noteworthy that various relics from the Paleolithic Age to the Joseon Dynasty were recovered from relics dispersion sites such as Josan-ri and Cheorwon Gangseo-ri in Paju, and Hoengsan-ri Temple Site is also a Buddhist relic in the Demilitarized Zone. However, in the case of some graveyards and relics sites in the Paju region, it was an opportunity to understand the reality that they are not safe from cultivation and development, and the ruins of Cheorwon Capital Castle, Seongsanseong Fortress, Jorangjin Bastion, and Gangseo-ri Bastion were damaged during the construction of military facilities, and an urgent investigation is needed. Also, farmland and hilly areas around the ruins of Jangdan, Gunnae-myeon, and Gangsan-ri have not been properly investigated for buried cultural assets due to small-scale development. Therefore, it is an important time for the relevant authorities and agencies to cooperate more closely to establish special management and medium- to long-term investigation measures for the cultural heritage in the Demilitarized Zone based on the results of this fact-finding investigation.

Research on Characterizing Urban Color Analysis based on Tourists-Shared Photos and Machine Learning - Focused on Dali City, China - (관광객 공유한 사진 및 머신 러닝을 활용한 도시 색채 특성 분석 연구 - 중국 대리시를 대상으로 -)

  • Yin, Xiaoyan;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.39-50
    • /
    • 2024
  • Color is an essential visual element that has a significant impact on the formation of a city's image and people's perceptions. Quantitative analysis of color in urban environments is a complex process that has been difficult to implement in the past. However, with recent rapid advances in Machine Learning, it has become possible to analyze city colors using photos shared by tourists. This study selected Dali City, a popular tourist destination in China, as a case study. Photos of Dali City shared by tourists were collected, and a method to measure large-scale city colors was explored by combining machine learning techniques. Specifically, the DeepLabv3+ model was first applied to perform a semantic segmentation of tourist sharing photos based on the ADE20k dataset, thereby separating artificial elements in the photos. Next, the K-means clustering algorithm was used to extract colors from the artificial elements in Dali City, and an adjacency matrix was constructed to analyze the correlations between the dominant colors. The research results indicate that the main color of the artificial elements in Dali City has the highest percentage of orange-grey. Furthermore, gray tones are often used in combination with other colors. The results indicated that local ethnic and Buddhist cultures influence the color characteristics of artificial elements in Dali City. This research provides a new method of color analysis, and the results not only help Dali City to shape an urban color image that meets the expectations of tourists but also provide reference materials for future urban color planning in Dali City.

Interaction Between Seasons and Auditory Elements, Features and Impressions of Soundscape in Influencing Auditory Preferences (청각선호도에 미치는 청각적 경관의 요소, 특징, 인상 요인과 계절의 상호작용 효과)

  • Han, Myung-Ho;Oh, Yang-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.306-316
    • /
    • 2007
  • Based on a concept of soundscape, this study aims to investigate Koreans' preference for auditory elements, features, and impressions depending upon the season, and examine how these auditory factors of soundstape and seasons interact with each other and attempt to discover their influence on people's auditory preferences. According to an environmental psychological approach called the caption evaluation method, 45 college students examined the soundscape of Namwon City while racing the streets in four seasons. In order to analyze the interactions between seasons and such auditory factors as elements, features, and impressions, it was conducted the GLM univariate analysis and the NPAR tests for independent samples. The results of the analyses show that there are interactive effects between seasons and auditory factors like elements, features, and impressions and that the auditory factors have an effect on auditory preference. Moreover, as for seasonal preference for auditory elements, it was found that people prefer natural sound in spring, summer, and fall while they prefer social sound in winter. Concerning seasonal preference for auditory features, people place a focus on the behaviors in spring, summer, and winter while they stress the surroundings in autumn, as for seasonal preference for auditory impressions, they make much of sound characteristics in spring and winter but they value the atmosphere of streets in summer and fall. The results of this study can he utilized as useful data in determining which auditory factors among elements, features, and impressions to take into consideration in a soundscape design.

Examining Diurnal Thermal Variations by Urban Built Environment Type with ECOSTRESS Land Surface Temperature Data: Evidence from Seoul, Korea (도시 건조환경 유형에 따른 서울시 주간 지표면 온도 변동성 분석: ECOSTRESS 데이터의 활용)

  • Gyuwon Jeon;Yujin Park
    • Journal of the Korean Regional Science Association
    • /
    • v.40 no.2
    • /
    • pp.107-130
    • /
    • 2024
  • Urban land surface temperature (LST) change is a major environmental factor that affects the thermal comfort, energy consumption, and health of urban residents. Most studies that explored the relationship between LST and urban built-environment form analyzed only midday LST. This study explores the diurnal variation of summertime LST in Seoul using ECOSTRESS data, which observes LST at various times of the day and analyzes whether the LST variation differs by built environment type. Launched in 2018, ECOSTRESS operates in a non-sun-synchronous orbit, observing LST with a high resolution of 70 meters. This study collected data from early morning (6:25) to evening (17:26) from 2019 to 2022 to build time-series LST. Based on greenery, water bodies, and building form data, eight types of Seoul's built environment were derived by hierarchical clustering, and the LST fluctuation characteristics of each cluster were compared. The results showed that the spatial disparity in LST increased after dawn, peaked at noon, and decreased again, highlighting areas with rapid versus stable LST changes. Low-rise and high-rise compact districts experienced fast, high temperature increases and high variability, while low-density apartments experienced moderate LST increases and low variability. These results suggest urban forms that can mitigate rapid daytime heating.

How to build an AI Safety Management Chatbot Service based on IoT Construction Health Monitoring (IoT 건축시공 건전성 모니터링 기반 AI 안전관리 챗봇서비스 구축방안)

  • Hwi Jin Kang;Sung Jo Choi;Sang Jun Han;Jae Hyun Kim;Seung Ho Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Purpose: This paper conducts IoT and CCTV-based safety monitoring to analyze accidents and potential risks occurring at construction sites, and detect and analyze risks such as falls and collisions or abnormalities and to establish a system for early warning using devices like a walkie-talkie and chatbot service. Method: A safety management service model is presented through smart construction technology case studies at the construction site and review a relevant literature analysis. Result: According to 'Construction Accident Statistics,' in 2021, there were 26,888 casualties in the construction industry, accounting for 26.3% of all reported accidents. Fatalities in construction-related accidents amounted to 417 individuals, representing 50.5% of all industrial accident-related deaths. This study suggests implementing AI chatbot services for construction site safety management utilizing IoT-based health monitoring technologies in smart construction practices. Construction sites where stakeholders such as workers participate were demonstrated by implementing an artificial intelligence chatbot system by selecting major risk areas within the workplace, such as scaffolding processes, openings, and access to hazardous machinery. Conclusion: The possibility of commercialization was confirmed by receiving more than 90 points in the satisfaction survey of participating workers regarding the empirical results of the artificial intelligence chatbot service at construction sites.

The Effect of Entrained Air Contents on the Properties of Freeze-thaw Deterioration and Chloride Migration in Marine Concrete (연행 공기량이 해양콘크리트의 동결융해 및 염화물 확산특성에 미치는 영향)

  • Park, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.161-168
    • /
    • 2008
  • The freeze-thaw deterioration and chloride attack, which are the typical degradation factors for durability of marine concrete, are significantly affected by pore structures in terms of penetration and diffusion. These pore structures of concrete are closely related to the types and amount of AE agent, used to guarantee the resistance of freeze-thaw deterioration, and the elapsed time before concrete pouring. This paper evaluates the durability of concrete based on the results of tests on cylinder specimens and core specimens from mock-up members with different air content of 4~6% and 8~10%, respectively. According to the test results, the air content of hardened concrete is 2.5~5.2% at 7 days and 2.4~5.1% at 28 days. These air contents are about half of the initial values just after the concrete mixing. Judging from the amount of scale after the freeze-thaw test completed, air content of 8~10% is slightly more beneficial against the deterioration of concrete than air content of 4~6%. Meanwhile, the core specimens from mock-up members exhibit somewhat unfavorable freeze-thaw deterioration and chloride migration characteristic compared with the cylinder specimens tested in the laboratory under the same mixing condition, as to show 106% in freeze-thaw test and 160% in chloride diffusion coefficient test, respectively.