• Title/Summary/Keyword: 건조 및 습윤과정

Search Result 51, Processing Time 0.025 seconds

Characteristics of Cyclic Drying-Wetting on Strength of Solidified Soil Mixed Porosity Silica (다공성 실리카를 혼합한 경화토의 건습반복 강도특성)

  • Kim, Donggeun;Bang, Seongtaek;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.29-34
    • /
    • 2014
  • In order to examine strength properties depended on climate changes of solidified soil amended by porosity silica which enhance harms of cement, this study conducts a wetting and drying repetition test and then, attempts to verify strength properties before and after solidified soil gets environmental influence. Test pieces for the unconfined compression test changed the mixing ratio of solidified soil compared to mixed soil weigh to 5 %, 10 % and 15 %. For each step, it was created by mixing 0.5 %, 1.0 % and 1.5 % of wood chips, and curing period for 7, 14, and 28 days. Then, the wetting and drying repetition process was repeated 0, 3, 6, and 12 cycles to analyze mechanical properties. To also evaluate changes of relative dynamic elastic modulus before and after the wetting and drying, dynamic elastic modulus tests were conducted when each cycle was completed.

Soil-Water Characteristic Curves for Drying and Wetting Processes in Granite-Weathered Soil Based on Variations in Fine Contents (세립분 함량을 고려한 국내 화강풍화토의 건조 및 습윤 함수특성곡선 분석)

  • Lee, Sangbeen;Ryou, Jae-Eun;Seo, Jinuk;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • In current slope stability analysis techniques, slope stability is evaluated based on the saturated-soil theory. However, soil-water characteristics change frequently depending on the climate. Therefore, because the saturated soil theory has limitations, the application of the unsaturated soil theory is necessary for slope stability. It is also important to evaluate the engineering properties of unsaturated soil because the capillary absorption capacity is reduced due to heavy rain, thereby causing a reduction in slope stability. In this study, soil-water characteristic tests were performed using four samples with different fine contents (0%, 10%, 20%, and 30%) using granite-weathered soil in domestic production areas. In particular, to consider the previously conducted drying process as well as the evaluation of stability due to heavy rain on the actual slope, a wetting process was conducted, in which the water content was increased. In addition, the van Genuchten (1980) model, which is the most consistent theoretical equation for the experiment, was used with various theoretical equations, and the parameters were analyzed according to the fine content of the granite-weathered soil for the drying and wetting processes.

Evaluation of the Influence of the Method of Sample Preparation on the Shearing Behavior of Sands using Elastic Waves (탄성파를 통한 시료성형방법에 따른 모래 전단거동특성 평가)

  • Yoo, Jinkwon;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.57-65
    • /
    • 2014
  • For economic and technical reasons, it is difficult to obtain high quality undisturbed cohesionless samples, hence most researchers rely on preparing remolded and reconstituted representative samples of sandy soils. In this study, moist tamping, air pluviation, and dry deposition methods were applied to make remolded samples at similar relative densities. A series of isotropically consolidated drained tests were conducted with accompanied by measured elastic wave velocities in order to evaluate a difference between sample preparation methods and relative densities. For the elastic wave velocity measurements, piezoelectric elements were installed on the top and bottom cap of the triaxial device. The results showed that soil behavior relies on sample preparation methods, and that the trend of shear wave velocity was the same with volumetric strain behavior.

Dynamic Characteristics of Decomposed Granite Soils by Changing Geoenvironment (지반환경 변화에 따른 화강토의 동적특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Kim, Kyung-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.41-52
    • /
    • 2014
  • Decomposed granite soil is likely to lose its strength when exposed to air or water. Such a geomaterial is weathered by wetting-drying or freezing-melting. In this study, resonant column tests were conducted to figure out the dynamic characteristics of granite soil that has affected by environmental changes like weathering condition. The results show that wetting-drying weathering condition is the most affective parameter on the dynamic characteristics of granite soil. In the meantime, artificial weathering conditions such as freezing-melting has less affection at first and getting increase as the process repeats constantly.

Struvite 침전법을 이용한 폐수내 질소와 인의 제거 및 회수 - Struvite의 재이용성 및 효율성 -

  • Song, Myeong-Gi;Jeong, Jin-Hwa;Park, Hyeon-Ju;Na, Chun-Gi
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.517-521
    • /
    • 2008
  • Struvite의 최적 생성조건은 NH$_4$-N의 초기농도에 관계없이 모두 NH$_4^+$, PO$_4^{3-}$ 및 Mg$^{2+}$가 등몰비이고 pH 10.5이었다. Struvite 침전반응에서 NH$_4$-N 및 PO$_4$-P 제거율에 미치는 struvite seeding 효과는 습윤상태의 struvite를 seeding할 경우 그 효과가 거의 없었으나 건조된 struvite를 seeding할 경우 NH$_4$-N의 제거율은 증가되지만 PO$_4$-P의 제거율은 감소되는 경향을 나타냈다. 이는 건조과정에서 struvite의 NH$_4$-N가 휘산되어 소실되었기 때문이다. Mg와 P원으로서 struvite의 재이용을 위한 적정 건조온도는 100$^{\circ}C$ 이하였으며 그 이상 온도에서는 struvite가 $NH_4MgPO_4\cdot6H_2O$형에서 MgPO$_4$형으로 상전이점에 따라 struvite seeding에 의한 NE$_4$-N의 제거율이 현저히 감소되었다. 건조된 struvite는 초기 NH$_4$-N의 몰농도 대비 50%를 seeding할 경우 60% 이상의 NH$_4$-N를 제거하였으며, seeding량을 150%로 증가시킬 경우 90% 이상의 NH$_4$-N 제거율을 얻을 수 있었다. 그러나 struvite를 반복 재사용할 경우 재사용 횟수에 비례하여 NH$_4$-N의 제거율은 감소하는 경향을 보여 재사용 횟수가 제한적임을 알 수 있었다.

  • PDF

Experimental study on Mechanical Properties and Optimum Mix Design of Sulfur-Rubber Concrete (SRC) (황(黃)-고무 콘크리트의 역학적(力學的) 특성(特性)과 최적배합비(最適配合比)에 관한 연구(硏究))

  • Na, Okpin;Lee, Jaesung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Recently, as the registration of vehicles increases, the utilization of the waste tires is emerging as environmental issues. Crumb rubber reproduced by scrap tires has been reused up to 25% in the construction field. The purpose of this paper is to investigate the mechanical properties of sulfur-rubber concrete (SRC) and to suggest the optimum mix design in terms of the compressive strength. Specimens were prepared with various mixing parameters: amount of sulfur, rubber, and micro-fillers. Two casting processes were also mentioned; dry process and wet process. The results mainly showed that the compressive strength of SRC decreased with an increment of rubber content. However, adding micro-filler and adjusting sulfur contents could improve the compressive strength of SRC. Optimum values of sulfur and rubber content were selected by workability and compressive strength of SRC. SRC can be applied to road constructions where high strength of concrete is not concerned, to wall panels that require low unit weight, to construction of median in highways to resist high impact load, and in sound barriers to absorb sound waves.

A Simulation Model for the Intermittent Hydrologic Process(I) - Alternate Renewal Process (ARP) and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(I) - 교대재생과정(交代再生過程)(ARP)과 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.509-521
    • /
    • 1994
  • This study is an effort to develop computer simulation model that produce precipitation patterns from stochastic model. A stochastic model is formulated for the process of daily precipitation with considering the sequences of wet and dry days and the precipitation amounts on wet days. This study consists of 2 papers and the process of precipitation occurrence is modelled by an alternate renewal process (ARP) in paper (I). In the ARP model for the precipitation occurrence, four discrete distributions, used to fit the wet and dry spells, were as follows; truncated binomial distribution (TBD), truncated Poisson distribution (TPD), truncated negative binomial distribution (TNBD), logarithmic series distribution (LSD). In companion paper (II) the process of occurrence is developed by Markov chain. The amounts of precipitation, given that precipitation has occurred, are described by a Gamma. Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Daily precipitation series model consists of two models, A-Wand A-G model, by combining the process of precipitation occurrence and a continuous probability distribution on the precipitation of wet days. To evaluate the performance of the simulation model, output from the model was compared with historical data of 7 stations in the Nakdong and Seomjin river basin. The results of paper (1) show that it is possible to design a model for the synthetic generation of IX)int precipitation patterns.

  • PDF

BOND STRENGTH AND MICROLEAKAGE IN RESIN BONDING TO TOOTH STRUCTURE (치질접착에서 접착강도와 변연누출)

  • Kim, Jin-Hee;Park, Jeong-Won;Park, Jin-Hoon;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.570-577
    • /
    • 1999
  • Intuitively, higher bond strengths should result in less leakage. However, the relationship between bond strengths and microleakage value is complex and not clearly understood. The purpose of this study was to evaluate the relationship between tensile bond strengths and microleakage values in the same restorations to understand the behavior of resin bonding to tooth structure. One-hundred and twenty enamel or dentin specimens from freshly extracted bovine mandibular incisors were used. The specimen was treated with 32% phosphoric acid for 15 seconds and rinsed for 20 seconds. the teeth were divided into four groups by means of wet bonding technique or dry bonding. One-Step$^{TM}$ adhesive were applied to the specimen. The specimens were immersed in 2% methylene blue solution for 7 days, and tensile bond strength and microleakage were measured. The results were as follows: 1. Significant negative correlation was found between bond strengths and micro leakage values. Hence, higher bond strengths seem to be associated with lower microleakage, and vice versa (r=-0 50, p<0.05). 2. The Enamel/Wet group showed significantly higher bond strength than Enamel/Dry one, and Dentin/Wet group showed higher strength than Dentin/Dry one (p<0.05). 3. Microleakage was significantly less ill wet bonding than in dry one at dentin (p<0.05), however, there was no significant difference between wet and dry bonding at enamel (p>0.05).

  • PDF

Determination of the Soil-water Characteristic Curve Using the Flow Pump Technique (피스톤 펌프 기법을 이용한 흙-수분 특성곡선 측정방법)

  • 황창수;김태형
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.155-162
    • /
    • 2003
  • The soil-water characteristic curve (SWCC) represents the essential constitutive relationship for solving various problems in unsaturated soil mechanics. A reliable and convenient experimental method is needed for the determination of the SWCC in engineering applications. This study introduces and proves that the suction-saturation experimental measurement based on the flow pump technique is a convenient and accurate method for obtaining the SWCC. The flow pump technique provides complete control over the test conditions and is capable of detecting all the important elements of the SWCC. In particular, it is capable of defining continuous drying and wetting curves, the moment of air occlusion, and the hysteretic behavior of unsaturated soils. Not only the optimal testing procedure but also the analysis technique for the flow pump technique has been established in this study. Especially, the method of the suction drop measurement was developed to measure the SWCC. This method is a convenient and time saving method without losing accuracy.

Facile Preparation of Nanoporous Silica Aerogel Granules (나노다공성 실리카 에어로겔 과립의 간단 제조)

  • Kim, Nam Hyun;Hwang, Ha Soo;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.209-213
    • /
    • 2011
  • Hydrophobic silica aerogel beads with low thermal conductivity and high porosity were prepared using a cost-effective sodium silicate as a silica source via an ambient-pressure drying process. Monolithic wet gels were first prepared by adjusting pH (~5) of a diluted sodium silicate solution. The silica aerogel beads (0.5~20 mm) were manufactured by breaking the wet gel monoliths under a simultaneous solvent exchange/surface modification process and an ambient-pressure drying process without using co-precursors or templates. Dried silica aerogel beads exhibit a comparable porosity ($593m^2/g$ of surface area, 34.9 nm of pore size, and $4.4cm^3/g$ of pore volume) to that of the aerogel powder prepared in the same conditions. Thermal conductivity of the silica aerogel beads (19.8 mW/mK at $20^{\circ}C$) is also identical to the aerogel powder.