• Title/Summary/Keyword: 건조저항일

Search Result 286, Processing Time 0.022 seconds

Stomatal Control and Strategy Segregation to Drought Stress in Young Trees of Several Oak Species (수종 참나무속 유식물의 건조스트레스에 대한 기공저항의 조절과 전략의 분화)

  • 김종욱;김준호
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 1994
  • Leaf diffusive resistance (LDR), stomatal density, length of guard cell and hair density of leaves of 6 oak species were determined under withdrawal of water, and their strategies of drought stress were analyzed by principal component analysis. LDR of Quercus acutissima, Q. aliena and Q. serrata increased earlier than those of the other species at high leaf water potential $({\Psi}_{leaf})$ or low water saturation deficit (WSD), which was an avoidance mechanism reducing damage by water stress. Q. variabilis with low stomatal density, small stomatal size and high hair density had avoidance mechanisms increasing LDR at high $({\Psi}_{leaf})$ However, Q. mongolica and Q. dentata increased LDR at low $({\Psi}_{leaf})$ as xeric species do. Results from principal component analysis on the 15 variables related to strategies of drought stress indicated that the 6 oak species were divided into 2 groups: (1) Q. acutissima, Q. aliena and Q. serrata as mesic habitat species and (2) Q. variabilis, Q. mongolica and Q. dentata as xeric habitat species. Among three xeric species Q. acutissima differed from the other two species in the drought strategies such as high hair density, low stornatal density, high leaf area ratio, stomatal closing at low $({\Psi}_{leaf})$ and small cell wall elasticity. The results could reasonably explain their drought strategies in natural habitat.

  • PDF

Strength and Crack Resistance Properties of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 강도 및 균열저항 특성)

  • Kim, Sung-Bae;Kim, Hyun-Young;Yi, Na-Hyun;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The main objective of this study was to evaluate the effect of recycled PET (RPET) fiber made from waste PET bottles to examine application on concrete member. To evaluate the reinforcement effect of RPET fiber in concrete member, experimental tests were performed, such as mechanical property tests (compressive strength, modulus of elasticity and splitting tensile strength) and drying shrinkage test. In mechanical property tests, compressive strength and modulus of elasticity in concrete mixed with RPET fiber gradually decreased, but splitting tensile strength gradually increased as volume fraction of fiber increased. In drying shrinkage test, free drying shrinkage increased. In restrained case, in contrast, crack occurrence was delayed because of tensile resistance increase by RPET fiber. The comparison of RPET and PP fiber added concrete specimen's properties showed that two materials had similar properties. In conclusion, RPET fiber is an alternative material of PP fiber, even finer for its excellence in eco-friendliness due to the recycling of waste PET bottles and its possible contribution to the pollution declination.

Study on the Removal Efficiency of a TEDA Impregnated Charcoal Bed for Methyliodide under Dry Condition (건조 조건하에서 TEDA주입 탄소층에 의한 Methyliodide 제거 효율에 관한 연구)

  • Won Jim Cho;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.80-88
    • /
    • 1984
  • The removal mechanism of air borne methyl iodide by triethylenediamine (TEDA) impregnated charcoal bed was investigated. The analysis of experimental data indicates that pore diffusion is the rate controlling step when the air velocity is over 20cm/sec, and both fore diffusion resistance and external mass transfer resistance are contributed to the overall resistance when the air velocity is 10cm/sec. The adsorption model to describe the performance of impregnated charcoal bed under dry condition where water vapors do not exist in air, is proposed. The calculated values and experimental results are well matched.

  • PDF

EIS monitoring on corroded reinforcing steel in cement mortar after calcium electro-deposition treatment (칼슘 전착처리 후, 시멘트 모르타르 속 철근의 부식속도에 대한 EIS 모니터링)

  • Kim, Je-Kyoung;Kee, Seong-Hoon;Yee, Jurng-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2019
  • The primary purposes of this study are to understand a fundamental effects of electro-deposition on reinforcing steel in saturated Ca(OH)2 electrolyte, and evaluate the corrosion rates of rebars under cyclic 3wt.%NaCl immersion and dry corrosion environment. The three cement mortar specimens with cover thickness 5, 10 and 30mm, were prepared in the experiment. To monitor the corrosion rates of rebars in mortar, the three cement mortar specimens were exposed to 110 wet-drying cycles(8-hour-immersion in 3wt.%NaCl and 16-hour-drying in a room temperature) in the laboratory. During the wet-dry cycles, the polarization resistance, Rp, and solution resistance, Rs, were continuously measured. The instantaneous corrosion rates of rebars on the effect of electro-depositing with sat. Ca(OH)2 electrolyte were estimated from obtained R-1p and degrees of wetness were estimated from Rs values. From the experimental results, the corrosion rates of rebars were greatly accelerated by wet/dry cycles. During the mortars exposed to drying condition, the large increases in the corrosion rates were showed at all rebar surfaces in three mortar specimen, attributed from the accelerated reduction rates of dissolved oxygen in drying process. However, the corrosion rates on rebar surface electrochemically deposited with sat. Ca(OH)2 electrolyte showed the clear decreases, caused by calcium deposits in the porous rust layer.

An Experimental Study on the Carbonation and Drying Shrinkage of Concrete Using High Volumes of Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 대량 사용한 콘크리트의 건조수축 및 중성화에 관한 실험적 연구)

  • Ryu, Dong-Woo;Kim, Woo-Jae;Yang, Wan-Hee;Park, Dong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • The effect of ground granulated blast-furnace slag (GGBS) and alkaline activator on the properties of setting, compressive strength, drying shrinkage and resistance of carbonation was assessed to develop high volume slag concrete, the GGBS replacement rate of which was more than 80 percent. The changes in the concrete as the replacement rate of GGBS increases were as follows. Initial and final setting time was delayed by two and a half hours, and the compressive strength development properties of concrete in early and long term age were decreased. Drying shrinkage was satisfactory as below $6{\times}10^{-4}$ in every mixture, and yet showed a tangible trend by replacement rate. Carbonation was materially increased. Setting time and early strength development property, however, were extremely advanced by the addition of the alkaline activator. While drying shrinkage was improved by the alkaline activator, resistance to carbonation was not.

The study on the Resistance Decrease Fore-Body Section development of Chemical tanker (케미컬 탱커선의 저항감소 선수선형 개발에 관한 연구)

  • Son, Chang-Ryeon;Sim, Sang-Mog;Park, Chung-Hwan;Lee, Kyung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.51-54
    • /
    • 2006
  • 최근 국내 중형급 조선소에서는 케미컬 탱커선을 주력선종으로 건조하고 있다. 하지만 선형개발 기술이 미비하여 저항감소 선형개발에 소홀하였다. 또한 기존 대형선박의 선형을 그대로 사용하기 때문에 추진효율이 떨어지고 많은 선수저항이 발생하여 선속에 큰 영향을 미치게 된다. 이에 본 연구에서는 CFD이론 해석을 통해 선형특성을 파악하고 저항감소 및 추진 효율 향상을 위해 실적선과 개발대상선의 모형시험을 통하여 선수저항 성능을 비교, 분석하여 저항감소 선수선형을 개발하였다.

  • PDF

차인형 어선의 저항성능에 미치는 선미 웨지의 영향

  • 유재문;이대훈;강대선
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • v.18
    • /
    • pp.26-38
    • /
    • 2005
  • 본 논문에서는 KRISO에서 개발한 선형설계 전용 프로그램인 HCAD와 조파저항 계산 프로그램인 WAVIS를 사용하여 소형 어선을 개발한 예를 보이고 있다. 소형 고속 어선으로 사용되고 있는 차인형 선형을 기준선으로 하여 둥근바닥 선형(Round Bilge Hull Form)을 설계한 과정과, 두 가지 선형에 대한 저항 특성을 이용하여 선체 주위의 유동장과 조파저항을 계산 하였다. 차인형 선형의 저항 특성이 둥근 바닥 선형에 비해 다소 크게 나타났으나 소형 조선소의 건조비를 감안하여 차인형 선형에 대한 저항 감소를 시도하였다. 차인형 선형은 최근 어선의 고속화에 따라 고속 운항시 과도한 선수파가 발생하기 쉽고, 심한 트림이 발생할 가능성이 있으므로, 이러한 문제를 해결하기 위해 선미웨지를 설계하였으며, WAVIS를 이용한 수치계산에 의해 저항 성능이 개선되었음을 확인하였다.

  • PDF

Corrosion Monitoring of Reinforcing Bars in Cement Mortar Exposed to Seawater Immersion-and-dry Cycles (해수침지-건조 환경에 노출된 모르타르속 철근의 부식속도 평가)

  • Kim, Je-kyoung;Kee, Seong-Hoon;Yee, Jurng-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.10-18
    • /
    • 2018
  • The primary purposes of this study are to understand a fundamental aspect of current uniformity around a reinforcing bar (rebar) in cement mortar, and to develop an accurate monitoring method in a wet-dry cycling process with the alternative current (AC) impedance method. Three cement mortar specimens with two embedded rebars were prepared in the laboratory. As a main variable, the distance between two rebars was designed to be 10, 20 and 30 mm with the same thickness of 20 mm. To simulate the corrosion of rebars in concrete structures in a marine environment, three cement mortar specimens were exposed to 15 wet-drying cycles (24-hour-immersion in seawater and 48-hour-drying in a room temperature) in the laboratory. It was observed that the potential level shifted to a noble value during corrosion potential monitoring, which is attributed to acceleration of dissolved oxygen diffusion at the drying process. AC impedance was measured in a frequency range from 100 kHz to 1 mHz on a wet-drying process. A theoretical model was proposed to explain the interface condition between the rebars and cement mortar by using the equivalent circuit consisting of a solution resistance, a charge transfer resistance and a CPE (constant phase element). It was observed that the diffusion impedance appeared in a low frequency range as corrosion of rebars progresses. At the drying stage of the wet-drying cycles, the currents line for monitoring tended to be non-uniform at the interface of rebar/mortar, being phase shift, ${\theta}$, close to $-45^{\circ}$.

An Experimental Study on the Drying Shrinkage of Concrete Using High-Quality Recycled Sand (고품질 순환잔골재를 사용한 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Song, Ha-Young;Lee, Sang-Soo;Lee, Do-Heun;Lee, Jong-Gou;Kim, Jae-Hwan;Lim, Hyon-Ung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.136-143
    • /
    • 2006
  • In this study, recently it is urgently required that demolition waste concrete has to be recycled on the construction because urban development is accelerated and redevelopment project is rapidly expanded, production quantity of construction and demolition waste concrete is being increased. As a results of drying shrinkage test under restrained and unrestrained condition, although workability and mechanical properites of concrete using HQRS were similar to that of concrete using natural sand, there were a great difference in deformation characteristic of dry shrinkage according to replacement ratio of HQRS. And, it makes sure that use of HQRS instead of partial nature sand was effective because drying shrinkage of concrete using 30 volume percentage of HQRS was smaller than that using only natural sand. Therefore, it is the objective of this study to provide the fundamental data about the re-application as an analysis of the drying shrinkage characteristics of concrete using HQRS and it is able to creta a high value-added by using HQRS.

  • PDF