• Title/Summary/Keyword: 건조온도

Search Result 1,455, Processing Time 0.025 seconds

Drying Characteristics of High Moisture Low Rank Coal using a Steam Fluidized-bed Dryer (스팀 유동층 건조기를 이용한 고수분 저등급 석탄의 건조 특성)

  • Kim, Gi Yeong;Rhee, Young-Woo;Park, Jae Hyeok;Shun, Dowon;Bae, Dal-Hee;Shin, Jong-Seon;Ryu, Ho-Jung;Park, Jaehyeon
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.321-329
    • /
    • 2014
  • In this study, Indonesia low rank coal, which has moisture content of around 26%, is dried less than 5% by using a laboratory-scale (batch type) steam fluidized-bed dryer in order to produce the low-moisture, high rank coal. Normally, CCS (carbon capture and storage) process discharges $CO_2$ and steam mixture gas around $100-150^{\circ}C$ of temperature after regeneration reactor. The final purpose of this research is to dry low rank coal by using the outlet gas of CCS process. At this stage, steam is used as heat source for drying through the heat exchanger and $CO_2$ is used as fluidizing gas to the dryer. The experimental variables were the steam flow rate ranging from 0.3 to 1.1 kg/hr, steam temperature ranging from 100 to $130^{\circ}C$, and bed height ranging from 9 to 25 cm. The characteristics of the coal, before and after drying, were analyzed by a proximate analysis, the heating value analysis and particle size analysis. In summary, the drying rate of low rank coal was increased as steam flow rate and steam temperature increased and increased as bed height decreased.

Moisture Content Change of Korean Red Pine Logs During Air Drying: II. Prediction of Moisture Content Change of Korean Red Pine Logs under Different Air Drying Conditions (소나무 원목의 천연건조 중 함수율 변화: II. 소나무 원목의 천연건조 중 함수율 변화 예측)

  • HAN, Yeonjung;CHANG, Yoon-Seong;EOM, Chang-Deuk;LEE, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.732-750
    • /
    • 2019
  • Air drying was carried out on 15 Korean red pine logs to provide a prediction model of the moisture content (MC) change in the wood during drying. The final MC was 17.4% after 880 days since the beginning of air drying in the summer for 6 Korean red pine logs with 68.7% initial MC. The final MC was 16.0% after 760 days since the beginning of air drying in the winter for 9 Korean red pine logs with 35.8% initial MC. A regression model with R-squared of 0.925 was obtained as a result of multiple regression analyses with initial MC, top diameter, temperature, relative humidity, and wind speed as independent variable and and MC change during air drying as dependent variable. The initial MC and top diameter, which is the characteristic of Korean red pine, have greater effect on the MC decrease during air drying compared to meteorological factors such as the temperature, relative humidity, and wind speed. Two-dimensional mass transfer analysis was performed to predict the MC distribution of Korean red pine logs during air drying. Two prediction models with different air drying days and different meteorological factors for the determination of the diffusion coefficient and surface emission coefficient were presented. The error between the different two methods ranged from 0.1 to 0.8% and the difference from the measured value ranged from 2.2 to 3.6%. By measuring the internal MC during air drying of Korean pine logs with various initial MC and diameter, and calculating the moisture transfer coefficient in wood for each meteorological condition, the error of the prediction model can be reduced.

The change in C8 and C9 volatile compounds according to the drying conditions of Pleurotus citrinopileauts and P. djamor (노랑느타리와 분홍느타리의 건조조건에 따른 C8과 C9 향기성분의 변화)

  • Minji Oh;Minseek Kim;Ji-Hoon Im;Youn-Lee Oh
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.222-227
    • /
    • 2023
  • Mushrooms have a unique taste and aroma, so in the processing of mushroom products with other ingredients, a separate pre-processing step is often taken to eliminate the mushroom aroma. In this study, we analyzed the changes in the concentration of volatile compounds according to drying conditions to promote the activation of processing using the fruiting bodies of yellow oyster mushrooms(Pleurotus citrinopileatus) and pink oyster mushrooms(P. djamor). The caps and stipes of yellow oyster and pink oyster mushrooms were separated and freeze-dried at -70℃ for 120 hours. Subsequently, they were hot air-dried at temperatures of 40, 50, 60, and 70℃ for 24, 24, 16, and 12 hours, respectively. The dried samples were pulverized and quantitatively analyzed by SPME-GC-MS. In the case of yellow oyster mushrooms, the concentration of t-2-nonenal in caps and stipes during freeze-drying was 164.43 ㎍/g d.w. and 174.80 ㎍/g d.w., respectively, whereas during hot air-drying, it significantly decreased to 0.35~3.41 ㎍/g d.w. and 0.98~59.88 ㎍/g d.w. In a similar manner, for pink oyster mushrooms, the concentration of 1-octen-3-ol during freeze-drying in caps and stipes was 31.05 ㎍/g d.w. and 176.17 ㎍/g d.w., respectively, whereas during hot air-drying, it significantly decreased to 1.59~9.66 ㎍/g d.w. and 1.96~15.77 ㎍/g d.w. Furthermore, most volatile compounds showed a tendency to decrease in concentration as the temperature during hot air-drying increased.

Redrying Fire - Retardant - Treated Structural Plywood (구조용(構造用) 내화처리(耐火處理) 합판(合板)의 재건조(再乾燥)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Schaffer, E.L.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.1-21
    • /
    • 1981
  • Exterior grades of Douglas-fir and aspen plywood were impregnated with interior fire-retardant chemicals and redried under low-, intermediate-, and high-temperature drying conditions. Fire-retardant treatments included borax-boric acid, chromated zinc chloride, minalith, pyresote, and a commercial formulation. Drying processes included kiln and press-drying. Evaluated were drying rates and defects generated. The borax-boric acid and the commercial treatments redried at rates similar to water-treated controls. Other salt treatments were significantly slower drying and more defect prone. Chromated zinc chloride treatment was consistently the slowest drying and most defect prone. Press drying was three times faster at an equivalent temperature level. However, thickness shrinkage doubled because of 50 1b/in. platen pressure.

  • PDF

Temperature Effect on the Compaction Characteristic of Cohesionless Soil (온도에 따른 사질토의 다짐 특성)

  • Lee, Kicheol;Ji, Subin;Kim, Hobi;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.53-62
    • /
    • 2016
  • Among several factors controlling soil compaction, temperature is the factor that varies with region and season. Although earthwork is performed in many projects in the cold regions of the earth, studies on quantifying soil compaction associated with temperature are limited. This experimental study investigates the temperature effect on the soil compaction of cohesionless soil. Jumunjin sand was selected for the tests to represent cohesionless clean sand, which is widely used as an engineering fill at petrochemical projects such as northern Alberta of Canada and Russia. The laboratory test program consists of performing a series of standard proctor tests varying temperature of soil samples ranging from $-10^{\circ}C$ to $17^{\circ}C$. Test results indicate that soil specimen volume expansion occurred from bulking and its range was 0% to 6% with zero above temperature. For increasing temperature from $0^{\circ}C$ to $17^{\circ}C$, water content corresponding to maximum volume (minimum dry unit weight) was decreased and water content corresponding to minimum volume (maximum dry unit weight observed after reaching minimum dry unit weight) was slightly increased with increasing temperature. In zero below temperature, dry unit weight gradually decreased with increasing water content. In this case, no bulking effect was found and soil specimen volume increased due to the higher unit volume of ice.

A study of on site Pilot plant test of drying sewage sludge using Chain crusher flash dryer (타격기류 건조장치에 의한 하수슬러지의 건조 실증실험에 관한 연구)

  • Ahn, June-Shu;Kim, Byung-Tae;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5628-5636
    • /
    • 2012
  • Effective drying method of sewage sludge is researched in this study. To dry the sludge, chain crusher flash dryer was adopted to remove moisture content in the cell which is mostly responsible for the sludge moisture content. And Pilot plant experiment was conducted in real life sewage treatment plant to study effect and characteristics of operating conditions. Operating variables include sludge feeding rate, rotational speed of chain, process temperature and feed moisture content. As rotational speed of chain increased, product yield of sludge increased, and the performance of the testing system increased. And, as process temperature increased, the sludge drying efficiency increased. It is found that optimum feed moisture content is at 60% which shows the maximum sludge product yield and about 10 moisture content(%) of sludge product. Sludge feed rate showed optimal value, and when the sludge feed rate is exceeded, sludge product yield did not increased but the amount of residue increased. Pilot plant experiment results are as follow. The optimal condition for the rotational speed of chain 1600rpm(max. speed), final sludge discharge temperature $80^{\circ}C$, feed moisture content 60%, and feed rate 60kg/h. When the plant was operated at the optimal conditions, the final product showed fairly good results such as sludge product yield 85.5%, moisture content 11.0% and sludge drying efficiency 81.7%.

Study on Kinetics and Thermodynamics of Rotary Evaporation of Paclitaxel for Removal of Residual Pentane (파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구)

  • Han, Jang Hoon;Ji, Seong-Bin;Kim, Ye-Sol;Lee, Seung-Hyun;Park, Seo-Hui;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.807-815
    • /
    • 2017
  • This study investigated the removal efficiency of residual pentane from paclitaxel according to the drying temperature in the case of rotary evaporation, and performed a kinetic and thermodynamic analysis of the drying process. At all the temperatures (25, 30, 35, 40, and $45^{\circ}C$), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Five drying models (Newton, Page, modified Page, Henderson and Pabis, Geometric) were then used for the kinetic analysis, where the Henderson and Pabis model showed the highest coefficient of determination ($r^2$) and lowest root mean square deviation (RMSD), indicating that these models were the most suitable. Furthermore, in the thermodynamic analysis of the rotary evaporation, the activation energy ($E_a$) was 4.9815 kJ/mol and the standard Gibbs free energy change (${\Delta}G^0$) was negative, whereas the standard enthalpy change (${\Delta}H^0$) and standard entropy change (${\Delta}S^0$) were both positive, indicating that the drying process was spontaneous, endothermic, and irreversible.

Changes of Free Sugar and Organic Acid in the Osmotic Dehydration Process of Apples (사과의 삼투건조시 유리당과 유기산의 변화)

  • Youn, Kwang-Sup;Lee, Jun-Ho;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1095-1103
    • /
    • 1996
  • In order to minimize the deterioration of dried apple quality, changes of free sugar content, organic acid and ascorbic and during osmotic dehydration with sucrose at various temperature, concentration and immersion time were investigated in this study, total sugar increased as the temperature, concentration and immersion time were increased. Sucrose showed the largest change in content while fructose and glucose showed no and small changes, respectively. Large amounts of malic and fumaric acids, and small amounts of oxalic, citric, maleic and succinic acids were detected. Organic acids were high at low temperature treatment, and became higher with increasing concentration. Loss of ascorbic acid was small at the low temperature and high concentration. Effect of immersion time was negligible. Changes of free sugar, and organic and ascorbic acid followed the first-order and second-order reaction rate equations, respectively. Arrhenius equation was applied to determine the effect of temperature on reaction rate constants with high $r^2$. To predict the changes of quality, a model was established by using the optimum functions of temperature, concentration and immersion time. The model had high $r^2$ value for the quality changes during drying.

  • PDF