• Title/Summary/Keyword: 건조온도

Search Result 1,454, Processing Time 0.035 seconds

Development of a Kiln Dry Schedule for Lindera erythrocarpa Grown in Hongsung, Chungnam Province, Korea (충남 홍성지역에서 자란 비목나무(Lindera erythrocarpa)의 열기건조스케쥴 개발)

  • Kang, Chun-Won;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • Lindera erythrocarpa is a less utilized species in Korea although that it has straight stem and it grows up to 40 cm in diameter. A proper kiln-dry schedule is required in advance to utilize an unknown species. Terazwa's quick oven-dry method was used to find it and which was confirmed by drying 25 mm thick boards in a kiln. The average green moisture content and the average green specific gravity of Lindera erythrocarpa are 72.3% and 0.53, respectively. Prospective kiln-drying conditions obtained by Terazwa's quick oven-dry method are a initial dry-bulb temperature of $50^{\circ}C$, a initial wet-bulb depression of $4^{\circ}C$ and a final dry-bulb temperature of $75^{\circ}C$, which are in a good agreement with USDA FPL kiln-dry schedule of T5-D4. 25 mm thick boards dried in a kiln with T5-D4 kiln-dry schedule did not have any severe drying defects such as honycombing and warping. A severer kiln-dry schedule of T8-C5 was developed and applied to another kiln-drying run to confirm it.

The Blanching Effects on the Drying Rates and the Color of Hot Red Pepper (고추의 건조율 및 색도에 미치는 Blanching 효과)

  • Chung, Shin-Kyo;Shin, Jong-Chul;Choi, Jong-Uck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.64-69
    • /
    • 1992
  • To examine the effects of blanching treatments on the drying of hot red pepper, the pilot scale hot-air dryer equipped with the weight sensor using strain gauge type load cell and strain amplifier was designed and manufactured. The drying characteristic curves of cut hot red pepper showed a settling down period followed by a constant rate period and falling rate period, but blanched hot red pepper showed only falling rate period. According as the blanching time and temperature rises, the drying rates and the capsanthin contents of hot red pepper fairly increased. Considering the drying rates and the color values of dried hot red pepper, we suggest the desirable blanching condition of hot red pepper should be water blanching at $80^{\circ}C$ for 3 mins.

  • PDF

Microbial and Physicochemical Characteristics on Raw Cereal for Sunsik by Hot-air Drying Methods (열풍건조에 따른 선식용 곡류원료의 미생물 및 이화학적 특성)

  • Kim, Jin Hee;Yang, Ji Young
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.415-419
    • /
    • 2012
  • To know proper drying condition for making a safe Sunsik, uncooked food, microbial and physicochemical characteristics of cereal dried by hot-air drying was investigated. As moisture content of 3 Sunsik samples was reduced to about 8%, protein, carbohydrate, fat and ash content of those was increased. But approximate composition of black bean, black rice and glutinous millete and black bean showed little changes during hot-air drying (30, 40, $50^{\circ}C$). Lightness (L value), redness (a value) and yellowness (b value) was increased after hot-air drying. In case of black rice and glutinous millet, b value and L value wasn't changed individually. When we measured a texture for 3 kinds of raw cereal for, hardness of dried cereals was lower than raw cereals. Hardness of dried cereals was increasd as drying temperature was increased. As results of mocrobiologicl experiment for 3 kinds of sunsik on hot-air drying conditions, total cell count was reduced 2 log - 3 log and other pathogenic microorganism wasn't detected except B. cereus.

Mass transfer Characteristic during Osmotic Dehydration of Ginger and Its Effect on Quality (생강 삼투압 건조 시 물질이동 특성과 품질에 미치는 효과)

  • Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.372-376
    • /
    • 1998
  • Internal mass transfer during osmotic dehydration of gingers in sugar solution was examined as a function of concentration, temperature and immersion time of those solutions using moisture loss, sugar gain, molality and rate parameter. Influence of osmotic dehydration on browning reaction and texture properties of air dried rehydrated was also evaluated. Increasing the concentration and temperature of sugar solutions increased moisture loss, sugar gain, molality and rate parameter. Water loss and sugar gain were rapid in the first 3 min and then changed gentle slope. Moisture loss during osmotic dehydration using a sugar solution $(60\;Brix,\;80^{\circ}C)$ with 18 min immersion time was 40.05 g moisture/100 g wet ginger which was 52% reduction of initial moisture content in ginger (83.02%, wet basis). The changes of rate parameter were more affected by temperature than by concentration of sugar solution. Minimum browning degree (O.D.=0.027) was carried out by osmotic dehydration in sugar solution $(40\;or\;50\;Brix,\;80^{\circ}C)$ with 15 min immersion time compared to control (O.D.=0.132). Influence of osmotic dehydration on puncture forces of 3 min rehydrated ginger in boiling water were $22{\sim}34%$ of reduction, while blanching treatment had not affected compared to those of control.

  • PDF

Development of Heated-Air Dryer for Agricultural Waste Using Waste Heat of Incineration Plant (소각장 폐열을 활용한 농업폐기물 열풍 건조장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • To manufacturing of solid fuel by reuse of the wastes, the drying unit which have 500 kg/hr of drying capacity was developed and experimentally evaluate the performance. The spinach grown in Nam-hae island were used for the experiments and investigated of the heated-air drying characteristics as the inlet amount of raw materials, raw material stirring status, conveying type and drying time. The drying air heated by the energy derived from the steam which is supplied from the incineration plant. The moisture contents of raw materials were measured 85.65%. The inlet flow rate of drying air made a difference as the depth of the raw materials loaded on the drying unit and temperature has showed 108~144℃. The drying speed of the mixed drying more than doubled as that of non mixed drying under the same drying type, inlet amount, drying time and drying air temperature. In each experiment, the drying capacity have showed over 500 kg/hr. A drying efficiency of the ratio of drying consumption energy to input energy was 33.46%, lower than the average of 57.76% for the 157 conventional dryers. Because developed dryer must have a drying time of less than one hour, it is considered that the dry efficiency has been reduced due to the loss of wind volume during drying. If waste heat from incineration plant is used as a direct heat source, the dry air temperature is expected to be at least 160℃, greatly improving the drying capacity.

Mass Transfer Characteristics in the Osmotic Dehydration Process of Carrots (당근의 삼투건조시 물질이동 특성)

  • Youn, Kwang-Sup;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-393
    • /
    • 1995
  • Diffusion coefficients of moisture and solid, reaction rate constants of carotene destruction, and the fitness of drying models for moisture transfer were determined to study the characteristics of mass transfer during osmotic dehydration. Moisture loss and solid gain were increased with increase of temperature and concentration; temperature had higher osmotic effect than concentration. Diffusion coefficient showed similar trend with osmotic effect. Diffusion coefficients of solids were larger than those of moisture because the movement of solid was faster than that of moisture at the high temperature. Reaction rate constants were affected to the greater extent by concentration changes than by temperature changes. Arrhenius equation was applied to determine the effect of temperature on diffusion coefficients and reaction rate constants. Moisture diffusion required high activation energy in $20^{\circ}Brix$, while relatively low in $60^{\circ}Brix$. To predict the diffusion coefficients and reaction rate constants, a model was established by using the optimum functions of temperature and concentration. The model had high $R^2$ value when applied to diffusion coefficients, but low when applied to reaction rate constants. Quadratic drying model was most fittable to express moisture transfer during drying. In conclusion, moisture content of carrots could be predictable during the osmotic dehydration process, and thereby mass transfer characteristics could be determined by predicted moisture content and diffusion coefficient.

  • PDF

Mass Transfer Characteristics during the Osmotic Dehydration Process of Apples (사과의 삼투건조시 물질이동 특성)

  • 윤광섭;최용희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.5
    • /
    • pp.824-830
    • /
    • 1996
  • In order to minimize the deterioration of osmotic dried apple quality, the characteristics of mass transfer during osmotic dehydration such as solid gain(SG), weight reduction(WR) and moisture loss(ML) were investigated. Moisture and solid transfer were analyzed by Fick's law. The highest (equation omitted)E value was observed with severe browning at $60^{\circ}C.$ The concentration effect on (equation omitted)E were higher at high temperatures than at low temperatures. SG, WR and ML increased as immersion temperature, sugar concentration and immersion time increased. Higher concentration of sucrose led to more sucrose absorption resulting increase in SG. Diffusion coefficients of moisture increased with immersion temperature and sugar concentration. As concentration increased, diffusion coefficients of solids increased at $20^{\circ}C$ while it decreased at $40^{\circ}C$ and $60^{\circ}C.$ Arrhenius equation was appropriately explain the effect of temperature on diffusion coefficients. Moisture and solid diffusion showed high activation energy in 20 。Brix solution, compared with in 40 and 60 。Brix.

  • PDF

A Study on Shrinkage Crack of Steel Composite Concrete Box Structure (Transfer Girder) (강합성 콘크리트 박스구조물(트랜스퍼 거더)의 건조수축 균열에 대한 연구)

  • Choi, Jung-Youl;Kim, Dae-Ill
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.685-691
    • /
    • 2022
  • This study was based on the steel composite concrete box structure (Transfer girder) which was installed to support the skyscrapers directly above the subway line. In this study, it was analytically proved that the cause of cracks on the steel composite concrete box structure were the shrinkage cracks by comparing the results of crack investigation and numerical analysis. As the results, it was found that the internal temperature difference between concrete and steel members occurred according to the shape of the steel frame embedded in concrete, the location of vertical stiffener, and the closed section area. The narrower spacing of vertical stiffener was occurred the internal temperature concentration of the structure and the temperature difference increased. And the location of higher thermal strain and temperature were similar to the location of actual cracks by the visual inspection. Therefore, the internal temperature concentration parts were formed according to the presence and spacing of the vertical stiffeners and the inspection passage in the central part of the structure. The shrinkage cracks were occurred by the restrained of temperature expansion and contraction of the concrete. As the results of this study, it was important to separate and manage the non-structural cracks caused by shrinkage and the structural cracks in the maintenance of serviced steel-composite concrete structures.

Characteristics of Cereals Prepared by Extrusion-Cooking and Freeze-drying (압출성형과 동결건조 곡류의 특성)

  • Tie, Jin;Park, Hee-Yong;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.757-762
    • /
    • 2005
  • Characteristics of cereals prepared by extrusion-cooking and freeze-drying were compared. Parameters used were water solubility index (WSI), water absorption index (WAI), paste viscosity, and sterilization. Variables for extrusion process were barrel temperature at die section (70, 90, and $110^{\circ}C$) and moisture content (25 and 30%). WAI and WSI of extruded cereals were higher, whereas trough, breakdown, and final viscosity were lower than those of raw and freeze-dried cereals. Plate counting revealed no microbes in extruded cereals, whereas microbe colony was observed in freeze-dried cereals. Extrusion-cooking at low temperature resulted in better sterilization of microbes than freeze-drying for preparation of instant cereal drinks.

Evaluation of Shrinkage and Creep Behavior of Low-Heat Cement Concrete (저열 시멘트 콘크리트의 건조수축 및 크리프 거동 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Si-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • This study examined the long-term inelastic characteristics, including unrestrained shrinkage and creep, of low-heat cement concrete under different ambient curing temperatures. To achieve the designed compressive strength of 42MPa, water-to-binder ratios were selected to be 27.5, 30, and 32.5% for curing temperatures of 5, 20, and $40^{\circ}C$, respectively. Test results showed that the shrinkage strains of concrete mixtures tended to decrease with the decrease in curing temperature because of the delayed evaporation of internal capillary and gel waters. Meanwhile, creep strains were higher in concrete specimens under lower curing temperature due to the occurrence of the transition temperature creep. The design models of KCI provision gave better accuracy in comparison with test results than those of ACI 209, although a correction factor for low-heat cement needs to be established in the KCI provision.