• Title/Summary/Keyword: 건조연료

Search Result 169, Processing Time 0.037 seconds

Dehydration and RDF Production of Organic Sludge with Hydrothermal Pre-treatment Process (증기열 전처리공정을 이용한 유기성 슬러지의 건조 및 성형연료화)

  • Park, Se-Joon;Choi, Yong-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.526-531
    • /
    • 2009
  • This paper suggests the dehydration and RDF(Refuse Derived Fuel) production of organic sludge, livestock manure and sewerage sludge causing environmental problems, with hydrothermal pre-treatment process. The renewable technology from the organic wastes must involve short treatment time required, reusable energy source, anti-odor and viruses, low cost for the treatment, and well-fertilization. The hydrothermal pre-treatment process promotes to evaporate moisture in the sludge after being shortly treated in a reactor, which is supplied steam and heat by an external boiler, due to the pressure with steam breaks the cell walls of the sludge, so this process removes the internal moisture of the cell. Then, the treated sludge(solid-state) is mixed with waste vinyls called RDF(6,706kcal/kg).

Numerical Simulation of Flow and Thermal Performance in the Municapal Solid Waste Incinerator (도시폐기물 소각로내 열유동 해석을 위한 수치해석적 연구)

  • 박병수;이진욱;이정한;허일상
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1997.10a
    • /
    • pp.93-98
    • /
    • 1997
  • 도시폐기물의 효율적인 소각 처리를 위해서 폐기물 처리량 50 ton/day의 화격자 소각로를 대상으로 화학반응을 고려하여 연소실 내부의 열유동 현상을 전산모사하였다. 수치해석 프로그램으로 상용코드인 PHOENICS를 사용하여 3차원 모사를 하여 실험으로 파악할 수 없는 연소실 내부의 유동 및 폐기물과 산화제와의 반응을 계산하였다. 건조부, 주연소부, 후연소부에 1차연소용공기, 연료의 분포 및 폐기물의 발열량이 노내 열유동 현상에 미치는 영향을 조사하였다. 1차연소용 공기의 분포에 따라 노내 유동장의 형태에 변화가 있었으며, 벽면에서의 복사열전달을 고려한 경우 2차연소실과 출구근처에서 온도분포가 파일롯트 플랜트 실험결과와 잘 일치하는 r서으로 나타났다.

  • PDF

Real Environment Anti-Fouling Performance Test of Silyl Type SPC A/F Coatings (Silyl계 방오도료의 실환경 방오성능 평가)

  • Jeong, Hyeong-Jun;Jo, Yeon-Ho;Kim, Dae-Gyeong;Cheon, Je-Il;Han, Myeong-Su;U, Jong-Sik
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.83-83
    • /
    • 2014
  • 선박건조에 사용되는 도료 중 SPC(self-polishing copolymer) A/F(anti-fouling) 도료의 주된 기능은 해양생물의 부착 등 해양생물에 의한 오염을 방지하는 방오성능으로 인식되어 왔으나, 최근 방오성능 뿐 아니라 선박의 운항 시 선체저항을 줄임으로써 발생되는 연료절감효과와 선박의 미관을 위한 변색지연 등 SPC A/F 도료의 다른 기능에 많은 관심을 가지게 되었다. 이러한 관심과 사용자의 요구에 따라 도료사에서는 항력의 감소를 가져 올 수 있는 Silyl acrylate copolymer로 디자인 된 Silyl acrylate SPC A/F 도료를 개발하였으나 SPC A/F 도료의 방오제(biocides) 종류에 따른 방오성능 차이를 비교 평가 할 수 있는 객관적 자료가 부족하여, 본 연구를 통해 SPC A/F 도료의 종류 별 방오성능을 평가하고자 한다.

  • PDF

Recycling Apparatus of Food Wastes by Self Heating (자체 연소열을 이용하는 음식물류폐기물 재활용장치)

  • Han, Doo-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.393-396
    • /
    • 2007
  • 본 논문은 음식물류폐기물의 사료화 및 퇴비화 방법이 독성, 염분, 미숙성 등의 이유로 처리 여건이 어려운 데 대하여, 자체 처리열원으로 활용하여 경제성을 높이고 탈리액 처리 문제를 해결할 수 있는 방안을 제시한다. 2011년부터 유기성 폐기물이 해양투기가 금지됨에 따라 탈리액의 처리문제는 해결해야만 하는 문제로 제기되었으며, 2007년부터 시행되고 있는 함수율 95% 유지 조건은 새로운 처리비용의 증가로 이어졌다. 본 논문에서 제시하는 방법은 음식물류폐기물을 건조 후 자체 열원으로 사용하여 연료비를 획기적으로 줄이고, 탈리액 대신 경제적 효용가치가 있는 응축수를 만들어 해양투기에 의한 비용부담을 없애는 방법이며, 이전의 회분식 방법을 연속처리할 수 있도록 개량한 방법을 제시한다. 응축수는 액비로 사용가능하므로 완전 재활용이 가능하다.

  • PDF

Development of a Torrefaction Unit for Food and Agricultural Wastes (음식물·농업폐기물 열분해장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.73-79
    • /
    • 2018
  • In this study, a torrefaction unit with a capacity of 50 kg/hr was developed and experimented to produce of solid fuel by reuse of the food and agricultural wastes. Dried food wastes and agricultural wastes were used for the experiments and the heated-air torrefaction characteristics were investigated by the raw materials, torrefaction air temperature, and torrefaction time. For the dried agricultural wastes, measured torrefaction capacity and lower heating values were 55.35 kg/hr and 3,333 kcal/kg, respectively. As the lower heating values of the treated samples were greater, by around 7.8%, than those of the non-treated samples, torrefaction process was a very effective method to increase the heating value of the agricultural waste. In case of the dried food waste, torrefaction capacity and lower heating value was measured 88.27 kg/hr and 4,016 kcal/kg, respectively. As the lower heating value of treated ones showed around 9.0% higher than that of non treated ones, torrefaction process is very effective method to increase the heating value of the agricultural waste also. It will be assumed that the heating value shows more higher as increase the air temperature and decrease the moisture content of torrified matter.

A Study on the Characteristics of Combustion and Manufacturing Process on Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes (유기성폐기물 고체연료화를 위한 연소 및 제조과정의 특성연구)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.27-38
    • /
    • 2009
  • To investigate the feasibility of refuse derived fuels (RDFs) combined of sewage sludge and combustible wastes such as substitutive fuels instead of a stone coal, several different RDFs made with different mixtures of sewage sludge and combustible wastes were analyzed by various experiments. The combustion characteristics for the RDFs were investigated by analyzing fuel gases, and heating values were also measured by a bomb calorimeter. The fundamental properties such as moisture contents, ratios of combustible materials, amounts of ashes, heavy metals, ratios of each chemical elements and heating values were analyzed in accordance with mixing ratios of wt(%) for researching the characteristics of the RDFs. $RDF_{k-1}$ was made of mixing materials which were dried sewage sludge, food wastes and combustible wastes. $RDF_{k-2}$ was made of mixing materials which were peat-moss, tar and sewage sludge. Combustion experiments were carried out at the optimal conditions which were m=2 under air-fuel condition and $850^{\circ}C$. The retention times in the combustor were set at 5, 10 and 15minutes. 50 g of RDFs was put in the combustor for each experiments. The ranges for heating values of $RDF_{k-1}$ with different mixing ratios were from 6,900 kcal/kg to 8120 kcal/kg. The ranges for heating values of $RDF_{k-2}$ with different mixing ratios were from 4,014 kcal/kg to 8,050 kcal/kg. As a result of this study, the heating values, moisture contents, components of chemical elements and mixing ratios of the materials in RDFs had big effects on the efficiency of the combustion. In $RDF_{k-1}$, the higher amounts of combustible wastes in the mixtures, the higher heating values, concentrations of $C_xH_y$ and amounts of ashes were produced. In $RDF_{k-2}$, the higher tar amounts in the mixtures caused the higher heating values, amounts of ashes, concentrations of CO gas and CxHy.

Double-layered Polymer Electrolyte Membrane based on Sulfonated Poly(aryl ether sulfone)s for Direct Methanol Fuel Cells (직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 이중층 고분자 전해질 막의 제조 및 특성)

  • Hong, Young-Taik;Ko, Ha-Na;Park, Ji-Young;Choi, Jun-Kyu;Kim, Sang-Un;Kim, Hyung-Joong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.291-301
    • /
    • 2009
  • Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

Characteristics of Coal Devolatilization and Spontaneous Combustion at Low Temperatures (저온영역에서 석탄의 탈휘발 및 자연발화 특성 연구)

  • Sung Min Yoon;Seok Hyeong Lee;Tae Hwi An;Myung Won Seo;Sang Won Lee;Dae Sung Kim;Tae-Young Mun;Sung Jin Park;Sang Jun Yoon;Ji Hong Moon;Jae Goo Lee;Jong Hoon Joo;Ho Won Ra
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.288-296
    • /
    • 2023
  • Coal is abundantly available compared to other energy sources and is used as a versatile energy resource worldwide. To address the environmental issues stemming from conventional coal utilization, efforts are underway to develop clean coal utilization technologies, with IGCC technology being a notable example. In IGCC plants, coal is subjected to a CMD process where both drying and pulverization are achieved by supplying hot air. However, if the temperature of the supplied hot air is excessively high, it can lead to devolatilization and spontaneous combustion, thereby compromising the stable operation of the CMD process. This study aimed to measure the devolatilization and spontaneous combustion temperatures of different types of bituminous coal, and to explore their correlations with the characteristics of the coals. Six coal types exhibited devolatilization between 350 and 400 ℃, while three coal types showed devolatilization at temperatures exceeding 400 ℃. Spontaneous combustion ℃curred in one coal type below 100 ℃, six coal types between 100 and 150 ℃, and two coal types above 150 ℃. The measured initiation temperatures were compared with the coal characteristics including the oxygen, moisture, Fe2O3, and CaO content, the H/C ratio, and the O/C ratio to establish correlations. Regression analysis was used to calculate the regression coefficients and determination coefficients for each ignition temperature. It was found that 52.44% of the FC/VM data significantly influenced the volatile matter ignition temperature, and 59.10% of the Fe2O3 data significantly affected the spontaneous combustionignition temperature.

Physical Properties and Sulfur Absorption Capacity of Spray-dried Solid Sorbents for Desulfurization of Syngas (합성가스 중 $H_2S$ 정제용 탈황제의 물성 및 반응특성)

  • Baek, Jeom-In;Lee, Joong-Beom;Kim, Ji-Woong;Eom, Tae-Hyoung;Ryu, Jeong-Ho;Jeon, Won-Sik;Ryu, Chong-Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.880-883
    • /
    • 2009
  • 석탄가스화복합발전(IGCC) 시스템에서 합성가스 중에 포함된 황화수소($H_2S$)는 후단의 가스 터빈과 같은 장치의 부식을 방지하고, 합성가스를 이용하는 연료전지 등의 연계 공정에서 요구하는 수준에 맞추어 정제되어야 한다. 본 연구에서는 $H_2S$ 정제공정 추가에 따른 IGCC 시스템의 효율저하를 최소화하기 위하여 고온고압에서 사용가능한 탈황제를 분무건조법을 이용하여 제조하고 제조된 탈황제에 대해 물성 및 황 흡수능 시험을 실시하였다. 형상, 내마모도, 평균입자크기, 충진밀도와 함께 제조된 탈황제가 적용되는 유동층 공정에 적합한 강도를 보유하는지 여부를 미국표준시험방법에 의하여 측정하였다. 황 흡수능은 열중량분석기를 반응기로 사용하여 모사 합성 가스 분위기에서 측정하였다. 분무건조 성형된 탈황제의 일부가 구형이 아닌 타원형 또는 도넛 형태를 나타내고 있어 형상 개선을 위한 제조방법 개선이 필요한 것으로 나타났다. 제조된 탈황제는 기공도가 65% 이상으로 macropore가 기공부피의 대부분을, mesopore가 비표면적의 대부분을 제공하고 있었다. 소성온도를 650 $^{\circ}C$에서 750 $^{\circ}C$로 증가시킴에 따라 대체로 강도가 감소하는 경향을 나타내었다. 열중량분석기로 측정된 황 흡수능은 약 10 wt%로 나타났다. 제조된 탈황제 중 일부는 유동층 공정에 적합한 물성을 보유하고 있었으며 반응성 또한 기존에 개발된 탈황제에 버금가는 성능을 나타내어 향후 공정 적용이 가능할 것으로 분석되었다.

  • PDF