• Title/Summary/Keyword: 건조수축 저감형 유동화제

Search Result 4, Processing Time 0.022 seconds

A Study on the Physical Properties of Concrete Using Drying Shrinkage-Reducing Superplasticizer (건조수축 저감형 유동화제를 사용한 콘크리트의 물리적 특성에 관한 연구)

  • Shin Jae-Kyung;Oh Chi-Hyun;Choi Jin-Man;Lee Seong-Yeun;Han Min-Cheol;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.215-218
    • /
    • 2005
  • This paper intended to evaluate the applicability of drying shrinkage reducing superplasticizer (DSRA) by investigating physical properties of concrete using DSRA, The application of flowing concrete method exhibited a less loss of slump and air content with time than those of conventional concrete and had small bleeding. Flowing concrete had larger compressive strength than base and conventional concrete by as much as $3\~5\%$. It also had less drying shrinkage by as much as $20\%$ compared with conventional concrete. This is due to the coupled effect of reduced water content and aqueous type expansive admixture. On the other hand, neutralization depth of flowing concrete showed greater than conventional concrete.

  • PDF

Field Application of the Concrete with the Combination of Drying Shrinkage-Reducing Superplasticizer and Double Layer Bubble Sheet (건조수축 저감형 유동화제 및 2 중 버블시트를 사용한 콘크리트의 현장적용)

  • Han, Cheon-Goo;Oh, Chi-Hyun;Shin, Jae-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.107-113
    • /
    • 2007
  • This study investigates the filed application in Daebul Free Trade Zone applying both a flowing method using drying shrinkage-reducing superplasticizer(SRS) and an insulating curing method using double layer bubble sheet. Test results showed that fresh concrete satisfied target slump and air content. A structure adding SRS significantly decreased the total bleeding capacity and accelerated the setting time. As for the crack occurrence, the structure applying the flowing method and double bubble sheets simultaneously exhibited the most favorable crack endurance, while conventional concrete showed more than 1mm size of crack in overall. In addition, a structure applying the flowing concrete method partially presented the micro crack. For the area proportion of crack occurrence, the structure using the double bubble sheets indicated 9.8%, while others applying flowing concrete method was 28%, compared with that of conventional one. For the compressive strength of specimens, standard curing specimens indicated $3{\sim}33%$ higher value than that of specimens cured besides the field construction. The specimens containing SRS improved the strength of $2{\sim}6MPa$, which is $10{\sim}22%$ higher than that of conventional concrete.

Field Application of Concrete Using Drying Shrinkage-Reducing Superplasticizer (건조수축 저감형 유동화제를 사용한 콘크리트의 현장적용)

  • Shin, Jae-Kyung;Oh, Chi-Hyun;Choi, Jin-Man;Lee, Seong-Yeun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.13-16
    • /
    • 2006
  • This study investigates filed application in Daebul Free Trade Zone of a flowing method using drying shrinkage-reducing superplasticizer(SRS) and an insulating curing method using double bubble sheets. Test showed that fresh concrete satisfied target slump and air content. A structure adding SRS significantly decreased the total bleeding capacity and accelerated the setting time. As for the crack occurrence, the structure applying the flowing method and double bubble sheets simultaneously exhibited the most favorable crack endurance, while conventional concrete showed more than 1mm size of crack in overall, and a structure applying only the flowing method partially presented micro crack. For the area proportion of crack occurrence, the structure using the double bubble sheets indicated 9.8%, while others applying flowing method was 28%, compared with 100% of conventional one. Standard curing specimens had about $3{\sim}6%$ higher compressive strength than that of specimens cured at adjacent field construction. In addition, using SRS improved about $5{\sim}7MPa$, than that of conventional concrete at 91 days elapse.

  • PDF

A Study on the Development of Drying Shrinkage-Reducing Superplasticizer (건조수축 저감형 유동화제의 개발에 관한 연구)

  • Shin Jae-Kyung;Oh Chi-Hyun;Choi Jin-Man;Lee Seong-Yeun;Han Min-Cheol;Han Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.501-504
    • /
    • 2005
  • This paper discusses the development of drying shrinkage reducing type superplasticizer(DSRS) by varying dosage of polycarboxylic based superplasticizer, liquid type expansive admixture and antifoaming agent. Adequate mixture proportion of each admixture is fixed at 0.3$\%$ of superplasticizer, 0.15$\%$ of liquidtype expansive admixture and 0.0005$\%$ of antifoaming agent to insure the improvement in drying shrinkage as well as comparable to the slump and air content of conventional concrete. With this mixture proportion, compressive strength of concrete using DSRS is comparable to that of conventional concrete. The use of DSRS studied by the authors has a favorable effect on reducing drying shrinkage due to the effect of water content and expansion by expansive admixture.

  • PDF