• Title/Summary/Keyword: 건설 장비

Search Result 834, Processing Time 0.038 seconds

The Application of CO2 and Hydrometer Sensor for Development of Real Time Measuring Method on CO2 Emission of Construction Equipment (건설장비의 CO2배출량 실시간 측정방법 개발을 위한 CO2 및 유속센서의 활용)

  • Jang, Won-Suk;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.78-86
    • /
    • 2013
  • The researches for reduce $CO_2$ are going along animatedly in hole industry area. In construction area, the researches to minimize $CO_2$ emission are progressing variously. The researches to minimize $CO_2$ emission based on $CO_2$ emission. The method measuring $CO_2$ emission are using $CO_2$ emission coefficient on fuel consumption, LCA and an inter-industry relation table. Especially, the methods using the carbon emission coefficient based on fuel consumption are 3 types(Tier1~Tier3) of IPCC. Present, the most using method(Tier1) is using the fuel consumption and the carbon emission coefficient. But because this method do not effect each vehicle distance and driving environment, we can't calculate right $CO_2$ emission. Especially construction project's $CO_2$ emission could be different by project's characteristic. However, we can't apply these difference with present methods. So we need methodology calculating $CO_2$ emission by applying personal project's characteristic and these methodology's most important things is directly measuring $CO_2$ emission of construction equipment which use energy. The object of this study is to develop the $CO_2$ emission calculation methodology which occur in construction process, is to suggest ways to measure in real time $CO_2$ emission from construction equipment.

Development of Scheduling and Operation system for multi-manufacturing line of the assembly parts (조립부품 다중 제작라인의 일정계획 및 운영 시스템 개발)

  • Lee, Sang-Hyeop;Min, Sang-Gyu;Lee, Byeong-Yeol;Ha, Jae-Tae;Lee, Won-Tae;Jo, Jeong-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.425-428
    • /
    • 2005
  • 본 연구는 건설장비 차량 조립부품을 제작하는 가공공장의 계획 및 운영 시스템 개발에 대한 내용이다. 연구의 대상은 건설장비 차량인 굴삭기, 휠로더, 지게차의 조립부품을 제작하는 공장으로 제작품별 제작라인이 구성되어 있다. 그리고 각 제작라인에는 여러 개의 공정이 있으며, 일부 공정은 작업자에 의해 작업이 이루어지고, 용접 및 가공 등은 자동화된 장비 및 설비에 의해 작업이 된다. 가공공장에서 관리 및 운영의 주요 관점은 이후 공정인 조립공장의 조립 착수일에 늦지 않게 제작된 부품을 공급하는 것이다. 그리고 공장 자체적으로 제작라인 내의 재공재고 감소, 작업일간 작업부하평준화, 자동화 장비 및 설비의 효율 극대화 등이 공장의 주요 관리 사항이다. 따라서 본 연구에서는 가공공장에서 제작되는 조립부품의 납기일 준수, 재고 감소, 부하 평준화, 장비효율의 극대화를 위해 공장을 체계적으로 관리하기 위한 계획 및 운영 시스템을 개발하였다. 개발시스템에는 제작라인별 제작 착수 및 자재발주${\cdot}$입고 관리, 공정별 실적관리, 실시간 작업 진행 관리, 용접 불량 관리 기능 등이 있다. 시스템은 MSSQL 서버, 오라클과 Visual Basic, Visual C# ASP로 개발되었다.

  • PDF

A Study on Comparing the CO2 Emission Estimating Result for Construction Equipment (건설장비 CO2배출량산출결과 비교연구)

  • Kim, Byung-Soo;Jang, Won-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1675-1682
    • /
    • 2013
  • To resolve the Global Warming problem, it have to reduce $CO_2$ emission. Korea need to do actively more the effort to reduce the emission because $CO_2$ emission per person is top level in the world. It is performing variously. However, we should recognize the $CO_2$ emission attribute to decrease $CO_2$. Analyzing $CO_2$ emission of the construction equipment is important in this aspect. Present, the most popular $CO_2$ emission measuring method is the way using fuel consumption and emission factor. But this method have the problem of reliability because can't reflect the factor being out of proportion at fuel consumption. This study analyzed the reason of difference and compared to the emission factor method after calculate $CO_2$ emission in direct measurement method.

Investigation on Construction Process and Efficiency of Underwater Construction Equipment for Rubble Mound Leveling works (수중 고르기 장비의 건설 공정 및 효율성 분석)

  • Won, Deokhee;Jang, In-Sung;Shin, Changjoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.372-378
    • /
    • 2016
  • A mound was constructed to install a caisson and sofa blocks underwater. The mound riprap, which were of uniform grade, size, shape, and specific gravity, formed the foundation for the support superstructure. Also, rubble leveling works were performed before installing structures such as caissons. In this study, underwater construction equipment was developed with a remotely controlled operating system and underwater environment monitoring system for unmanned underwater rubble leveling work. The performance of the developed equipment was verified using on-land and underwater tests. In addition to the performance verification, the construction process and economic efficiency of the equipment should be checked before applying it to the real construction field for commercial purposes. In this paper, a construction process using the developed equipment was proposed and compared with the existing rubble leveling method. The results demonstrated that the new construction method has higher economic efficiency and safety than the existing construction method.

A Study on Virtual Environment Platform for Autonomous Tower Crane (타워크레인 자율화를 위한 가상환경 플랫폼 개발에 관한 연구)

  • Kim, Myeongjun;Yoon, Inseok;Kim, Namkyoun;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.3-14
    • /
    • 2022
  • Autonomous equipment requires a large amount of data from various environments. However, it takes a lot of time and cost for an experiment in a real construction sites, which are difficulties in data collection and processing. Therefore, this study aims to develop a virtual environment for autonomous tower cranes technology development and validation. The authors defined automation functions and operation conditions of tower cranes with three performance criteria: operational design domain, object and event detection and response, and minimum functional conditions. Afterward, this study developed a virtual environment for learning and validation for autonomous functions such as recognition, decision making, and control using the Unity game engine. Validation was conducted by construction industry experts with a fidelity which is the representative matrix for virtual environment assessment. Through the virtual environment platform developed in this study, it will be possible to reduce the cost and time for data collection and technology development. Also, it is also expected to contribute to autonomous driving for not only tower cranes but also other construction equipment.

A Process Reference Model Development for RFID/USN Technologies based Next Generation Intelligent Construction Supply Chain Management (RFID/USN기술 기반의 차세대 지능형 건설물류관리 프로세스 레퍼런스 모델)

  • Lee, Woo-Jae;Shin, Tae-Hong;Yoon, Su-Won;Chin, Sang-Yoon;Kwon, Soon-Wook;Kim, Yea-Sang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.305-310
    • /
    • 2008
  • A lot of changes are required in a management method of a project because the character of construction projects gets bigger and higher gradually. Especially, for the efficiency of the management method the plans of various viewpoints focused on the construction supply chain field that the technical application of Ubiquitous Technologies such as RFID/USN is being advanced actively are presented. Recently, the introduction of the intelligent equipment which is developed for intelligence of construction site requires the new process model in the construction supply chain management on the construction site. Therefore, this study is to propose the intelligent construction supply chain reference model development in order to provide the guide that the numerous materials for construction could easily be applied in the changed process, as mentioned above, by overcoming the limit of the existing construction supply chain process which is proposed as bar codes and RFID/USN based individual material types and reflecting the change factors like the intelligent equipment of construction supply chain management.

  • PDF