• Title/Summary/Keyword: 건설성능

Search Result 2,130, Processing Time 0.03 seconds

Evaluation of the Performance on Coating on Roller Compacted Concrete Pavement for Bike Roads (자전거도로용 롤러 전압 콘크리트 포장의 코팅에 따른 성능 평가)

  • Lee, Chang-Ho;Lee, Seung-Woo;Kim, Seong-Kil
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.79-86
    • /
    • 2011
  • Recently, usage bicycle is encouraged to reduce fuel consumption and air pollution. For this purpose, bike road constructions are actively performed. However, types of pavement used in bike roads have high construction cost and performance comparing the required capacity of bike roads. Thus, an economical pavement type for construction is necessary for the effective development. Roller compacted concrete pavement have good requirements, such as easy construction and low costs, high structural performance of hydration and internal communication aggregation on compaction for bicycle roads. However, the pool landscape surface and resistance to deicer damage cannot be applied to the construction of bicycle roads. Thus, for solving this problem used coating which may have effect of improving the landscape and environmental resistance. To examine this effect were evaluated performance of roller compacted concrete pavement on the coating.

Seismic-performance Experiments of Circular Shear Piers Considering Effects of Rebar Corrosion, Lap splice and Axial Load (철근부식, 겹침이음 및 축하중의 영향을 고려한 원형 전단 교각의 내진성능실험)

  • Lee, Soo-Hyung;Lee, Seung-Geon;Lee, Hyerin;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.143-153
    • /
    • 2021
  • The corroded pier that has corrosion of the tranverse steel, main steel and lapsplice directly affects the seismic performance. The corrosion of the tranvese and main steel directly reduce the shear strength and bendig strength. If steel corrosion occurs in lap splice, the flexural strength and flexibility of existing corroded pier that are not seismic design are significantly reduced. In addition, as the axial force acting on the pier increase the shear strength. Considering these effects. In this stuydy, we cosidered steel corrosion, lap splice and axial force, for a reasonable evaluation of seismic-performance. It is confirmed that flexular failure occurs at pies where shear failure is expected to occur due to corrosion of reinforcement. These failure modes and their reason are analyzed, and necessary considerations are presented for seismic reinforcement.

Seismic Performance Evaluation for Piloti Structures of MPS Seismic Isolation Device in Response to Earthquakes on the Richter Scale 7.0 - Nonlinear Dynamic Analysis (리히터 규모 7.0의 지진에 대응하는 MPS 면진받침의 필로티 구조물에 대한 내진성능 평가 - 비선형 동적 해석)

  • Cho, Han-Min;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • Recently, various piloti structures have been constructed in Korea to secure residential and parking spaces. However, these piloti structures have been constructed in the form of protruding columns without walls to secure parking spaces on the first floor. In this form, when an earthquake occurs, the column is relatively easily damaged compared to general structures, and such damage can lead to the collapse of the structure. Therefore, in this study, a study on securing the safety of the piloti structure using the MPS (Multi Performance System) seismic isolation device was conducted. Nonlinear dynamic analysis according to the presence or absence of MPS seismic isolation device was performed on the existing piloti structure, and analysis results were compared and analyzed. Finally, each seismic performance evaluation was performed and the superiority of the MPS seismic isolation device was verified.

Healing Performance of Concrete Containing Hybrid Self-healing Materials (하이브리드 자기치유 소재를 혼입한 콘크리트의 치유성능)

  • Mih-ho, Hwang;Hyuk, Kwon;Hyung-Suk, Kim;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.569-576
    • /
    • 2022
  • In this study, the healing performance of hybrid self-healing concrete was investigated by mixing bacterial pellets(BP) and solid phase capsules(SC), respectively, based on organic-inorganic self-healing material(MC). Constant water head permeability test was applied as a method of evaluating the healing performance, and the healing rate and the healed crack width calculated by the equivalent crack width were used as evaluation indicies. As a result of the water permeability test, when the initial crack width was 0.3 mm, the healing rates of MC-BP and MC-SC were 2.1~3.0 %pt higher than that of MC, and the healed crack width of hybrid concrete increased by 0.017~0.018 mm. In conclusion, it was found that the self-healing performance was not significantly improved even if the two types of healing materials are used together.

Compressive Strength and Healing Performance of Mortar Using Self-healing Inorganic Materials (자기치유형 무기계 혼합재를 사용한 모르타르의 압축강도 및 치유성능)

  • Hyung-Suk, Kim;Woong-Jong, Lee;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • In this study, the characteristics of self-healing mortars produced using an inorganic self-healing material consisting of ground granulated blast furnace slag, expansion agent, and anhydrite, were investigated. For three types of self-healing mortars with different amounts of the inorganic healing material, compressive strength was measured and the self-healing performance was evaluated through the constant water head permeability test. The healing rate and equivalent crack width according to crack-induced aging were used as indicies of healing performance evaluation. Considering the development of compressive strength of the self-healing mortars, the change in the healing rate with healing periods, and the economic feasibility, the optimal amount of inorganic self-healing materials was suggested as 20 % of the mass of cement.