• Title/Summary/Keyword: 건설산업안전

Search Result 1,100, Processing Time 0.039 seconds

Growth Model for Korean CM Firms based on 2012 Statistics (CM기업의 단계별 발전 전략 모델: 2012년 실적자료 기반 분석)

  • Jung, Youngsoo;Shin, Dongwoo;Kang, Seunghee;Kim, Namjoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.92-104
    • /
    • 2014
  • CM services have been increasingly practiced over the two decades in the Korean construction industry, and recent efforts focus on further development in advanced CM capabilities and expansion to overseas market. However, there has been lack of holistic research to investigate current status and future direction of CM industry in Korea. In this context, the purposes of this study are 1) to analyze current status of Korean CM industry in terms of owners, market, CM firms, contracts, and work scopes, 2) to define different types of CM practices, and 3) to propose growth models for Korean CM firms based on the defined CM project types. An extensive literature review and statistical analysis of 2012 CM contracts were performed in order to analyze the CM status. Based on the analyses, ten different CM types are defined, and growth paths of CM firms are illustrated. Implications and lessons learned during the statistical analysis and workshops are briefly introduced as well.

A Study on Analysis of efficient Shelter Guide For Multiple-use Facilities (다중이용시설물에서의 효율적인 피난유도에 관한 현황 분석)

  • Park, In-Sook;Kim, Whoi-Yul;Kim, Byeoung-Su;Ahn, Byung-Ju;Lee, Yoon-Sun;Kim, Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.791-796
    • /
    • 2007
  • As large-scale buildings, skyscrapers, and multi-purpose buildings recently increase in numbers dramatically, the internal space of such buildings becomes more and more large and complicated accordingly. Since such structures usually accommodate a number of random people, the potential possibilities of disastrous tragedies are high, and the rates of injury and physical damage caused by the complicated system of the building also increase as well. However, most of the shelter designs of the existing buildings are based on the specifications according to the assigned laws and involved regulations. In this case, only general criteria are referred to regardless of the characteristics of each structure while other disaster-related features are not taken into consideration sufficiently. Since any actual fire may cause a terrible calamity, in such plans, shelter inducement can be neither safe nor effective. Thus, this study examines and analyzes currently run disaster prevention systems and shelter inducement facilities with COEX Mall as its subject, and analyzes the responding system to each situation based on the fire scenarios by means of As-Is Model. Through this analysis, presented are the measures to solve the problems of current disaster prevention systems and to improve shelter inducement methods effectively.

  • PDF

On Slimming down the Functions Room of Light Rail Transit Stations by Utilizing an Enhanced DSM Method (개선된 DSM 기법을 통한 경전철 정거장 기능실의 슬림화에 관한 연구)

  • Kim, Joo-Uk;Park, Kee-Jun;Kim, Young-Min;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.927-939
    • /
    • 2015
  • It appears that the rapid advance in technology has allowed to broaden the variety of rail systems technology, thereby fostering new business opportunity in rail industry. The direction of rail systems operations is mainly two fold. In one direction, long distance operations between mega cities are pursued with help of high speed trains under development. In the other case, relatively short distance operations for covering intra-city or suburban area are becoming popular. A good example of the latter case is light rail transit (LRT) systems. Due to the short distance operation, it is thus expected that both the development and operation cost for LRT systems be reduced to some extent. The cost reduction desired in there can be gained by scaling down the sizes of both the trains and stations as compared to those of normal rail systems. However, it is not well known how the LRT stations can be scaled down. The objective of this paper is to study on how to slim down the stations (particularly, the functions room) of LRT systems. To achieve the objective, an approach is studied based on a modified method of design structure matrix (DSM). Specifically, using the enhanced DSM method, an integrated architecture is developed for the functions room, in which equipments are housed to perform the functions of electricity, signaling, and communication for LRT stations. The use of the result indicates that the desired reduction can be obtained with the approach taken in the paper.

A Study on the agricultural productivity of ancient reservoir through hydrological analysis - Cheong reservoir located Yeongcheon, southeastern part of Korea (수문학적 분석을 통한 한국 고대수리시설의 농업생산력 연구 - 영천 청제)

  • Jang, Cheol Hee;Kim, Hyeon Jun;Seong, Jeong Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.33-33
    • /
    • 2018
  • 농업이 기간산업이었던 고대사회에서 수리시설(水利施設)의 축조는 농업의 성패를 가늠하는 중요한 요소로 정치 경제 사회 전반에 걸쳐 큰 영향을 미치는 국가적인 대규모 사업이었다. 이에 따라 수리시설의 축조 시기와 배경, 축조 기술과 운영, 구조, 몽리(蒙利) 효과 및 보수(補修)와 수축(修築) 등에 대한 연구는 우리의 농경(農耕)문화사를 밝히는데 중요한 관건이 된다. 관개(灌漑) 수리시설의 축조와 정비는 수전(水田) 개발과 밀접한 연관이 있다. 제방(堤防)을 축조함으로써 주변의 수전 개발을 촉진하고, 가뭄과 홍수로부터 안전하게 전답을 유지할 수 있어 수확량을 높이게 된다. 농업생산력의 향상은 대내적 체제 정비는 물론 치열한 국가 간의 경쟁에서 우위를 점하는데 필요한 경제적 배경이 된다. 이처럼 고대수리시설은 개인과 집단 나아가 국가의 생존을 뒷받침하는 근본이었지만, 과연 우리는 그 역사성과 의미에 대해 제대로 평가를 했던 것일까? 또한, 고대수리시설의 관개 및 치수(治水) 능력은 구체적으로 어느 정도였으며 근대에 비하면 어느 정도였을까? 일부 수리시설에 대해 관개면적을 추정한 경우는 있으나, 그 예도 많지 않을뿐더러 시기적인 변천 양상을 제대로 반영하고 있지 못하는 것이 현실이다. 본 연구는 고대로부터 원형을 비교적 잘 간직하고 있는 수리시설 중 경북(慶北) 영천(永川)의 청제(菁堤)를 대상으로 고고학적 역사학적 입장에서 보다는 수문학적(水文學的) 농업수리학적(農業水利學的) 관점에서 저수량(貯水量) 및 관개(灌漑) 면적에 따른 농업생산력을 살펴보았다. 지형 및 GIS (Geographic Information System) 정보를 이용하여 저수지의 규모 및 관개 면적을 추정하였으며 수문학적 해석 모형(模型)인 CAT(Catchment hydrologic cycle Assessment Tool)(김현준 등, 2012)을 이용하여 저수량 및 관개 가능량을 분석하였다. CAT은 공간 단위별로 침투(浸透), 증발(蒸發), 지하수(地下水)흐름 등의 모의(模擬)가 가능하도록 개발된 모형이다. 특히, 농업용 저수지 및 홍수방재용(洪水防災用) 저류(貯留)시설 등의 저류량(貯留量) 및 방류(放流量)에 대한 모의가 가능하다(장철희 등, 2012). 고대수리시설의 저수량 및 관개 면적에 따른 농업생산력을 공학적 수문학적으로 해석하는 연구는 과거물 관리 및 생산력의 실태를 좀 더 자세히 파악할 수 있는 토대가 될 것이며, 역사학적 자료와의 비교 분석을 통해 우리나라 고대수리시설의 역사성 및 우수성을 찾을 수 있을 것으로 판단된다.

  • PDF

A Study on Colors through Regeneration Design for Abandoned Factory Buildings - The Color of Buildings in the Port Area of Bongnae-dong, Yeongdo, Busan as an Example - (폐공장 건물 재생디자인에 대한 색채 관한 연구 - 부산 영도 봉래동 항만지역 건축물 색채를 중심으로 -)

  • Li, XinTong;Zhang, Ning;Cho, Joung-Hyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.177-188
    • /
    • 2021
  • In South Korea, with the advancement of the 'Port' project, the regeneration industry adapted to the modern economic development has been promoted, leading to construction around the port was also redefined. Therefore, through regeneration, the problem of image construction of buildings around the port has been re-examined, in which color is an important content of image construction. In this study, the exterior walls of abandoned factory buildings in the port area of Bongnaedong, Pusan were selected as the color research object and evaluated according to the characteristics of the regenerated factory buildings combined with the building color function. Technically, KSCP color analysis system is used for color analysis. In this way, the color plan for the exterior walls of the factory buildings is proposed to visually enhance the image of abandoned factory buildings and attract more attention, thus driving the regional economic development. The results of this study show that in order to adapt to the regional, industrial and commercial characteristics of the regenerated port space, the color hue, lightness, chroma and use area of the building can be changed to enhance the aesthetic value and enhance the inductivity and security.

Investigations of Vulnerable Members and Collapse Risk for System Support Based on Damage Scenarios (손상시나리오 기반 시스템 동바리 취약부재 도출 및 붕괴 위험성 분석)

  • Park, Sae In;Park, Ju-Hyun;An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • In recent years, many construction projects become large and complicated, and construction accidents also steadily increase, which grows interest in the safety and maintenance during construction. Many of the construction accidents are related to temporary construction and structures, but the safety evaluation and management during construction are unclear and indefinite due to the short operating period and continuous change in the formation of the temporary structure. The system support, which is one of the temporary structures to support the pouring load of concrete, was proposed to easily install and dismantle members with connection parts pre-manufactured. The use of the system support is increasing to improve the safety of the temporary structure during construction. However, the system support, which consists of multiple members, still has uncertainties in connectivity between members and supports of vertical members. Therefore, this study analyzed the structure, load, and accident cases of the system support to define the damage scenarios for member connection, support condition, and lateral displacement. The decrease rate of the critical load was analyzed according to the damage scenarios based on the defined unit structure of the system support. In addition, this study provided vulnerable members for each damage scenario, which could induce instability of the temporary structures during design, construction, and operation of the structure.

Determination of Resistance Factors of Load and Resistance Factor Design for Drilled Shaft Based on Load Test (LRFD 설계를 위한 현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Kwon, Oh-Sung;Jung, Sung-Jun;Han, Jin-Tae;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.17-24
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions; by comparison, most of bedrocks in Korea have weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety (FOS) was selected as 3.0, the target reliability indexes (${\beta}_c$) were evaluated as 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factors for dead load and live load are evaluated as approximately 1.25 and 1.75 respectively. However, when the target reliabilities are considered as 3.0, the resistance factors are evaluated as approximately 50% of the results when the target reliability index was 2.0.

Establishment of Risk Database and Development of Risk Classification System for NATM Tunnel (NATM 터널 공정리스크 데이터베이스 구축 및 리스크 분류체계 개발)

  • Kim, Hyunbee;Karunarathne, Batagalle Vinuri;Kim, ByungSoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2024
  • In the construction industry, not only safety accidents, but also various complex risks such as construction delays, cost increases, and environmental pollution occur, and management technologies are needed to solve them. Among them, process risk management, which directly affects the project, lacks related information compared to its importance. This study tried to develop a MATM tunnel process risk classification system to solve the difficulty of risk information retrieval due to the use of different classification systems for each project. Risk collection used existing literature review and experience mining techniques, and DB construction utilized the concept of natural language processing. For the structure of the classification system, the existing WBS structure was adopted in consideration of compatibility of data, and an RBS linked to the work species of the WBS was established. As a result of the research, a risk classification system was completed that easily identifies risks by work type and intuitively reveals risk characteristics and risk factors linked to risks. As a result of verifying the usability of the established classification system, it was found that the classification system was effective as risks and risk factors for each work type were easily identified by user input of keywords. Through this study, it is expected to contribute to preventing an increase in cost and construction period by identifying risks according to work types in advance when planning and designing NATM tunnels and establishing countermeasures suitable for those factors.

Analyzing Leakage Defect Types in Educational Facilities and Deriving Key Management Strategies Using the FTA Method (FTA기법을 이용한 교육시설 누수 하자 유형 분석 및 주요 원인 관리방안 )

  • Jung, Daegyo;Park, Hyunjung;Lee, Dongyeop;Kim, Daeyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2024
  • In recent years, the construction industry has diligently focused on improving the quality and safety of buildings through smart technologies. However, there is a growing trend of leakage defects, especially in educational facilities, due to aging. The objective of this study is to analyze the causes of these defects in educational environments using the Fault Tree Analysis (FTA) technique and propose preventive measures based on the findings. The FTA technique is explained through a review of domestic literature, and data from the Educational Support Center from 2019 to 2021 are examined to identify major defects. The construction of the Fault Tree (FT) for leakage defects resulted in the identification of 12 basic events. Subsequently, a comprehensive understanding of the causes of leakage is achieved through FTA analysis, leading to the identification of the primary causes of defects. Leakage defects accounted for 46.8% of all reported issues in educational facilities, with roof (ceiling) leaks being the most common problem. FTA analysis revealed that poor substrate treatment was the main cause of roof (ceiling) leaks, which could be attributed to cracks in the waterproof layer, joint cracks, and microvoids in the waterproof layer. The primary achievement of this research is to provide essential data for preventing leakage defects in educational facilities and developing preventive measures through the FTA technique. These results are expected to significantly enhance the management of educational facilities and the prevention of leakage issues.

Quality Enhancement of Recycled Concrete Aggregates for Backfill Materials by CO2 Carbonation: Development of a 5-kg-scale Prototype Reactor (이산화탄소의 탄산화 반응을 이용한 되메움재용 순환골재의 품질 개량: 5kg급 프로토타입 반응조 개발)

  • Kim, Jinwoo;Jeon, Min-Kyung;Kwon, Tae-Hyuk;Kim, Nam-Ryong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • In this study, recycled concrete aggregates (RCA) were treated in a 5-kg-scale prototype reactor with carbon dioxide (CO2) to enhance their material quality and geotechnical performance. The aggregate crushing value (ACV) and California bearing ratio (CBR) were measured on untreated RCAs and CO2-treated RCAs. After CO2 treatment, the ACV decreased from 35.6% to 33.2%, and the CBR increased from 97.5% to 102.4%. The CO2 treatment caused a reduction of fine particle generation and an increase in bearing capacity through carbonation. When CO2 treatment was performed with mechanical agitation, which provided additional enhancement in mechanical quality, the ACV was reduced further to 30.3%, and the CBR increased to 137.7%. If upscaled effectively, the proposed CO2 treatment technique would be an effective method to reduce carbon emissions in construction industries.