• Title/Summary/Keyword: 건설사업

Search Result 3,416, Processing Time 0.026 seconds

A study on the field application of high strength steel pipe reinforcement grouting (고강도 강관 보강 그라우팅의 현장 적용성에 관한 연구)

  • Shin, Hyunkang;Jung, Hyuksang;Ryu, Yongsun;Kim, Donghoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.455-478
    • /
    • 2019
  • In this paper, we conducted experimental investigation on the field applicability through the verification of reinforcement effect of the steel pipe reinforcement grouting using high strength steel pipe. SGT275 (formerly known as STK400) steel pipe is generally applied to the traditional steel pipe reinforcement grouting method. However, the analysis of tunnel collapse cases applying the steel pipe reinforcement grouting shows that there are cases where the excessive bending and breakage of steel pipe occur. One of the reasons causing these collapses is the lack of steel pipe stiffness responding to the loosening load of tunnels caused by excavation. The strength of steel pipe has increased due to the recent development of high strength steel pipe (SGT550). However, since research on the reinforcement method considering strength increase is insufficient, there is a need for research on this. Therefore, in this study, we conducted experiments on the tensile and bending strength based on various conditions between high strength steel pipe, and carried out basic research on effective field application depending on the strength difference of steel pipe through the conventional design method. In particular, we verified the reinforcement effect of high strength steel pipe through the measurement results of deformed shape and stress of steel pipe arising from excavation after constructing high strength steel pipe and general steel pipe at actual sites. The research results show that high strength steel pipe has excellent bending strength and the reinforcement effect of reinforced grouting. Further, it is expected that high strength steel pipe will have an arching effect thanks to strength increase.

A Study on the Socio-economic Direct Effects of the Opening of the Gyeongbu Expressway for 50 Years (경부고속도로 개통 50년의 사회경제적 직접효과 평가 연구)

  • Yoo, Dayoung;Park, Byeonghun;Hong, Jungyeol;Choi, Yoonhyuk;Shon, Euiyoung;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.119-131
    • /
    • 2021
  • This study quantitatively derived the direct socio-economic effects of the Gyeongbu Expressway, which opened in 1970, and suggested a methodological approach for more reliable results. The scenario was set when the Gyeongbu Expressway was not constructed in 1970, the opening of the Gyeongbu Expressway was delayed by 10 years, and the toll road between Seoul and Daejeon, or between Seoul and Gangneung was opened instead of the Gyeongbu Expressway as suggested by the World Bank. In addition, direct benefits were estimated by calculating and comparing the current vehicle operating costs, travel time costs, traffic accident costs, and environmental pollution costs. As a result, it was estimated that about 351 trillion won in direct benefits occurred, and it can be seen that the promotion of the construction project of the Gyeongbu Expressway at that time had a huge impact on South Korea's social economy.

Study on the Rational Construction Method Using Analysis of the Case Study of PHC Pile Foundation in Song-Do Area (송도지역 내 PHC 말뚝기초 적용사례분석을 통한 적정 시공방법 연구)

  • Lee, Byengho;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Song-Do international city is the area developed in large-scale land reclamation. Song-Do area consists of reclamation layer, sedimentary layer(loose silt, soft clay and sand alternating) and residual layer from the ground surface. Therefore, using pile foundation is inevitable to build structures safely. In this area, driven PHC piles have been generally constructed in terms of environmental and economic conditions. As a result of analyzing 4 sites in Song-Do district 5 and 7 recently, the method of driving pile has many problems because of existence of rigid soil in sedimentary layer and installation of more than 30m piles. In this case, when installing piles by drive after pre-boring up to appropriate depth, the results of constructability analysis were very good. And in the economic efficiency, although 4% of construction cost rose, it was a very slight increase in comparison with improvement of workability. In the case of the stability, more than 70% compared to the allowable stress of piles was satisfied through the load test. As a result, when PHC piles is installed in Song-Do district, the proper construction method is that piles are located at bearing layer after boring rigid sand layer.

A Study on Application of Test Bed for Verification of Realistic Fire Management Technology (실감형 화재관리기술 검증을 위한 테스트베드 적용방안 연구)

  • Choi, Woo-Chul;Kim, Tae-Hoon;Youn, Joon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.745-753
    • /
    • 2021
  • Recently, a large fire occurred in a multi-use facility used by a large number of citizens, including the vulnerable, resulting in a lot of injuries and damages. Although several pilot studies have been conducted to reduce such incidents, the development of advanced disaster response technology using the latest spatial information and IoT technology is still insufficient. In this study, a pilot test bed is built to demonstrate detailed technologies derived through the first stage of realistic fire management technology research for the development of applied technology in the field. In detail, the building conditions and candidate sites of the test bed were first investigated and analyzed to derive satisfactory conditions and candidate target buildings. A second pilot test bed was then selected, and the necessary sensor and facility infrastructure were built to demonstrate the outcomes. Finally, a scenario was produced for technology verification, and a test bed system was developed. The pilot test bed is expected to contribute to verifying intermediate outcomes of realistic fire management research projects, enhancing the quality of the developed technologies.

Investigations of Vulnerable Members and Collapse Risk for System Support Based on Damage Scenarios (손상시나리오 기반 시스템 동바리 취약부재 도출 및 붕괴 위험성 분석)

  • Park, Sae In;Park, Ju-Hyun;An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • In recent years, many construction projects become large and complicated, and construction accidents also steadily increase, which grows interest in the safety and maintenance during construction. Many of the construction accidents are related to temporary construction and structures, but the safety evaluation and management during construction are unclear and indefinite due to the short operating period and continuous change in the formation of the temporary structure. The system support, which is one of the temporary structures to support the pouring load of concrete, was proposed to easily install and dismantle members with connection parts pre-manufactured. The use of the system support is increasing to improve the safety of the temporary structure during construction. However, the system support, which consists of multiple members, still has uncertainties in connectivity between members and supports of vertical members. Therefore, this study analyzed the structure, load, and accident cases of the system support to define the damage scenarios for member connection, support condition, and lateral displacement. The decrease rate of the critical load was analyzed according to the damage scenarios based on the defined unit structure of the system support. In addition, this study provided vulnerable members for each damage scenario, which could induce instability of the temporary structures during design, construction, and operation of the structure.

A Study on the Development of a Full-Cycle Smart City Living Lab Model (전주기형 스마트시티 리빙랩 모델 개발 연구)

  • Park, Jun-Ho;Park, Jeong-Woo;Nam, Kwang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.162-170
    • /
    • 2021
  • The Smart City Living Lab is becoming important as a local innovation platform to develop urban solutions. In January 2018, the 4th industrial innovation committee, which was a direct subordinate from the president, empathized citizens' participation and their roles within the Smart City [Urban Innovation and Future Growth Engine-Creating Smart City Strategy]. This was the starting point of the living lab. The central government and local governments have been promoting various types of living labs to encourage citizens to participate. On the other hand, due to the lack of systematic concepts and theories for practicing and structuring living labs, the practice is not performed well. This study aimed to develop systematic approaches and implementation methods of the public-led Smart City Living Lab. The Full-cycle Smart City living Lab model was designed by integrating smart city living lab work processes, as suggested in the standards of the national land plan, double design diamond framework, which is a type of innovative design methodology, and design thinking process. The entire cycle Smart City living lab model requires four components to practice the living lab, such as framework, module, process, and methodologies. In the future, this model is expected to be incorporated in the Smart City Living Lab.

For Accuracy Improvement of High-tech Factory Construction Costs Predictions, Derivation of Correction Factors by Factory Capacity (하이테크 공장 건설 사업비 예측 정확도 향상을 위한 공장 생산량 기반 세부 공사별 보정계수 도출)

  • Choi, Seong Hoon;Kim, Jinchul;Oh, Jae Young;Kwon, Soonwook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.203-212
    • /
    • 2021
  • The high-tech industry, a highly knowledge-intensive industry based on advanced technologies such as electronics, new materials, and IT, is developing rapidly centering on the semiconductor, display, and battery fields. The market size of this industry is continuously increasing, and various challenges are coming forward due to various factors such as changes in the market, changes in demand, and the requirements of the clients. Many strategies are being implemented to advance the start-up time of factories, such as fast-track construction and basic line construction. Therefore, construction of high-tech factory is required to respond to various types of construction plans and early decision making, and an accurate and reliable method of calculating construction costs is needed. In this study the existing construction type was classified into the overall line configuration considering the total production of the factory, and a basic line configuration for quick production start-up. The correction ratio/value for each detailed construction required to calculate the construction cost of the basic line configuration type was derived. Finally, reliability and accuracy were verified by applying the correction ratio suggested in this study to a new high-tech factory construction project.

Behavior of Closely-Spaced Tunnel According to Separation Distance Using Scaled Model Tests (축소모형실험을 통한 이격거리에 따른 근접터널의 거동)

  • Ahn, Hyun-Ho;Choi, Jung-In;Shim, Seong-Hyeon;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.5-16
    • /
    • 2008
  • Most of roadway tunnels have been constructed in the form of parallel twin tunnel in Korea. If parallel twin tunnel does not have a sufficient separation distance between tunnels, the problem of tunnel stability can occur. Generally, it is reported that tunnels are not influenced by each other when a center distance between tunnels is two times longer than tunnel diameter under the complete elastic ground and five times under the soft ground. In this study, the scaled model tests of closely-spaced parallel twin tunnel using homogeneous material are performed and induced displacements are measured around the tunnel openings during excavation. The influence of separation distance between tunnels on the behavior of closely-spaced tunnel is investigated. The experimental results are expressed by the induced displacement vector and progress of crack during construction and at failure. The results show that based on the analysis of induced displacement at the crown during construction, the additional displacement of the preceding tunnel induced by the excavation of following tunnel decreases as the separation distance between twin tunnel increases until the center to center distance is two times of tunnel diameter. Beyond this point, however, the additional displacement has become stabilized.

Wastewater Reuse in Textile Industry: Case of Bandung, Indonesia (섬유공장폐수 재이용 사례: 인도네시아 반둥을 대상으로)

  • Chung, Youngkun;Lee, Mi-Young;Yang, Shi Chun;Kang, Seoktae
    • Journal of Appropriate Technology
    • /
    • v.5 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • Citarum river in West Java, Indonesia plays strategic roles for Jakarta metropolitan areas. Besides it provides major source of water supply such as domestics and drinking water including Jakarta, it also provides water for hundreds of industries through its cascade reservoirs. However, recently, Citarum river basin has been seriously suffering from water and groundwater pollution as well as the lowering-down of groundwater level due to the extreme use of water resources in dry season by domestic and industrial activities. This project objectives are design and installation of industrial wastewater treatment/recycle facilities to overcome the problem of water pollution and the lowering-down of groundwater level in Bandung. For these, cyclone type dissolved air flotation (DAF), CYFLOAT, was successfully installed as the appropriate technology for the target textile industry with 100 ton/day of capacity. The CYFLOAT system can remove the 96.8% of particulates, which are known as a critical factor to recycle the wastewater, within 40 min of residence time. Furthermore, The CYFLOAT system can reduce the operational cost and land use. The project was carried out in strong partnership with local institute including UNPAR, IBT, and PUSKIM for the sustainability of the technology to textile industry complex in Indonesia.

Measurement of Velocity and Discharge In Natural Streams with the Electronic Float System (전자부자 시스템을 활용한 자연하천의 유속과 유량 측정)

  • Lee, Chan Joo;Kim, Won;Kim, Chi Young;Kim, Dong Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.329-337
    • /
    • 2009
  • In this study we briefly introduce the electronic float system based on the GPS and RF communication technology and present some field application results. The system is capable of operating 15 floats simultaneously for making discharge measurement. Since the electronic floats (EFs) acquire flow paths, they can improve velocity measurement accuracy up to 10%. Additionally, measured velocities by the EFs show good agreement with those by an ADCP. Relative difference in sub-section area calculated by the electronic and conventional float methods is -79~71% and, due to convergent tendency of floats flowing along near banks, it increases much larger. It is possible to improve accuracy up to 5~6% in making discharge measurement by the electronic floats at site with irregular flow paths and section arrangement. The electronic float system is capable of calculating more accurate velocity and section area using position information based on GPS. By real-time measurement of velocity, cross-section area and discharge, the electronic float system is expected to reduce manpower and improve accuracy, rapidity and efficiency of flood discharge measurements.