• Title/Summary/Keyword: 건물 에너지 해석 프로그램

Search Result 23, Processing Time 0.024 seconds

Numerical Analysis of Smoke Control for high-rise Building Considering with the Enthalpy Equation (Enthalpy Equation을 이용한 고층 건물의 제연해석)

  • Bae, Sung-Ryong;Ro, Kyoung-Chul;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.27-32
    • /
    • 2010
  • Recently, increases of population density due to the industrialization in the metropolitan cities has caused the high-density and integration of life environment. Then various high-rise buildings are constructed for accommodation. However, high-rise building fires can cause high casualties due to increases of smoke spread velocity through the vertical shaft. In this study, the new program based on the enthalpy conservation for analysis of energy transfer for smoke control system, CAU_ESCAP, was developed. CAU_ESCAP was validated by comparing with the result of ASCOS. The characteristic of smoke control was analysed by using CAU_ESCAP for high-rise building fires.

건물에너지 성능평가를 위한 표준기상자료의 국내외 현황

  • 윤종호
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.32 no.8
    • /
    • pp.7-14
    • /
    • 2003
  • 건물에너지 성능평가 결과의 신뢰성 검증을 위해 가장 먼저 확인하는 요소 중의 하나가 어떠한 기상데이터를 적용했는가일 것이다. 아쉽게도 국내의 경우 아직까지 공인된 표준기상자료가 확립되어 있지 못한 실정이며, 이로 인해 다양한 프로그램을 통한 해석결과의 객관성 확립에 많은 어려움을 겪고 있다. 본 고에서는 건물에너지 성능평가를 위한 시간별 기상자료를 대상으로 국외 및 국내의 개발현황을 고찰하고, 향후 개선방향을 제안하고자 한다.

  • PDF

TRNSYS 프로그램에서 기상데이터의 구성과 특성

  • 홍희기
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.32 no.8
    • /
    • pp.15-19
    • /
    • 2003
  • 태양열 및 건물에너지 해석용 TRNSYS 프로그램에 사용되는 기상데이터의 구성과 특성 및 관련된 구성요소에 대해 소개하고자 한다.

  • PDF

Extracting Building Geometry for Structural Analysis from IFC Physical File (IFC 파일로부터 구조해석을 위한 형상모델의 구축)

  • Goh, IL-Du;Choi, Joong-Hyun;Kim, E-Doo;Jeong, Yeon-Suk;Lee, Jae-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.601-604
    • /
    • 2010
  • 기하형상이나 엔지니어링에 관한 정보를 3차원 모델기반으로 다루는 BIM기술은 기존의 2차원 도면작업들에 비해 업무의 효율성이나 신속성, 비용측면 등에서 많은 이점을 제공할 수 있어 건축계획 및 설계, 엔지니어링, 시공, 유지관리, 에너지분석 등 건설산업의 전 분야에 활용되고 있다. 본 논문은 BIM용 프로그램들간에 정보교환을 위해 사용되는 건물의 국제표준 정보모델인 IFC 파일로부터 구조해석을 위한 건물형상모델을 자동으로 구축하기 위한 방법을 제시하고, 실제 구현한 프로그램으로 적용사례를 보여준다.

  • PDF

Development of Simplified Building Energy Simulation Program for Building Energy Performance Analysis (건물에너지 성능 분석을 위한 간이 건물에너지 시뮬레이션 프로그램 개발에 관한 연구)

  • Park, Jong-Il;Kang, Yoon-Suk;Ihm, Pyeong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • There are various types of energy simulation tool to predict both thermal load and energy use. However, the problem about these software is that they have too much input variables and need expert with skills to run the simulation. Therefore, the purpose of this study is to develop the thermal analysis simulation program with input variables which eliminates coordinates of building components instead of using full coordinates by using DOE2. Since the simulation engine of the program is DOE2, the validity of S-DOE is performed by comparing peak heating and cooling load results with VisualDOE and annual energy use results with actual energy use of 1996. The results have shown that there are little difference between VisualDOE and S-DOE. Also it showed that there are little difference between actual energy use and S-DOE energy use results. S-DOE took less time to model a building than VisualDOE. These results reveals that the application of S-DOE have potentials in accurately predicting both energy load and energy use of the building and still have an advantage of taking less time to model a building.

A Study on Development of Simplified Thermal Load Calculation Program for Building Energy Analysis (건물에너지 해석을 위한 간이열부하 해석프로그램 개발에 관한 연구)

  • Kang, Yoon-Suk;Um, Mi-Eun;Ihm, Pyeong-Chan;Park, Jong-Il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.72-77
    • /
    • 2008
  • About 25% of overall energy use of Korea had been spent in buildings. It is crucial to acknowledge the importance of saving energy in buildings. In order to save energy, it is important to predict accurate energy use. There are numerous energy simulation program that predicts both energy load and energy use. The problem of the energy simulation program is that it holds too many input variables, and it needs experts to model a building. So, our purpose of this study is to develop the simplified thermal load calculation program for building energy analysis which eliminates coordinates of building components instead of using full coordinates by using DOE2. Since the engine of the program is DOE2, we verified the validity of S-DOE by comparing peak heating & cooling load results and annual energy use results. The results shows that there are little difference between VisualDOE and S-DOE. Also it showed that S-DOE took less time to input variables than VisualDOE. These results reveals that the application of S-DOE is possible to accurately predict energy load and energy use of the building and still have strong point that it takes less time to analyse building energy.

  • PDF

Study on Seismic Performance of Steel Structure with Precast Concrete Cladding Panel and Connector Considered as Structural Components (외부벽판과 연결부재를 구조요소로 취급한 경우 철골구조물의 내진성능에 관한 연구)

  • Byeon, Ji-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.127-133
    • /
    • 2008
  • The purpose of this study is to investigate the seismic performance of both exterior precast concrete cladding panels and their connections on steel frame, when these cladding systems are considered as the structural components. The degrees of their participation of lateral stiffness to the main building are evaluated in terms of different heights of the cladding panels. Considering the cladding system as an integrated building provides additional lateral stiffness, as well as a mechanism for energy dissipation and this system can be used as one of an advanced passive seismic control system. Hysteresis behaviors of connectors are modeled and integrated into a nonlinear finite element analysis program, ABAQUS. The results show that connections play the most important role in structural cladding system and they improve seismic performance of overall building response.

Design Method for Cast-in-place Energy Pile Considering Equivalent Heat Exchange Rate (등가열교환율을 적용한 현장타설 에너지파일 설계법)

  • Min, Sunhong;Park, Sangwoo;Jung, Kyoungsik;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1049-1061
    • /
    • 2013
  • In this paper, a relative heat exchange rate is numerically compared for cast-in-place concrete energy piles with different heat exchange pipe configurations, and a new design method for energy piles is proposed. An equivalent heat exchange rate was estimated for the W-type (one series loop), multiple U-type (four parallel loops), and coil-type heat exchanger installed in the same large-diameter drilled shaft. In order to simulate a cooling operation in summer by a CFD analysis, the LWT (leaving water temperature) into a energy pile was fixed at $35^{\circ}C$ and then the EWT (entering water temperature) into a heat pump was monitored. In case of continuously applying the artificial maximum cooling load for 100 hours, all of the three types of heat exchangers show the marginally similar heat exchange rate. However, in case of intermittently applying the cooling load with a cycle of 8 hours operation-16 hours off for 7 consecutive days, the coil type heat exchanger exhibits a heat exchange rate only 86 % of the multiple U-type due to measurable thermal interference between pipe loops in the energy pile. On the other hand, the W-type possesses the similar heat exchange rate to the multiple U-type. The equivalent heat exchange rates for each configuration of heat exchangers obtained from the CFD analysis were adopted for implementing the commercial design program (PILESIM2). Finally, a design method for cast-in-place concrete energy piles is proposed along with a design chart in consideration of typical design factors.