• Title/Summary/Keyword: 건물탐지

Search Result 104, Processing Time 0.029 seconds

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery (UAV와 다시기 위성영상을 이용한 붕괴건물 탐지)

  • Jung, Sejung;Lee, Kirim;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.187-196
    • /
    • 2020
  • In this study, collapsed building detection using UAV (Unmanned Aerial Vehicle) and PlanetScope satellite images was carried out, suggesting the possibility of utilization of heterogeneous sensors in object detection located on the surface. To this end, the area where about 20 buildings collapsed due to forest fire damage was selected as study site. First of all, the feature information of objects such as ExG (Excess Green), GLCM (Gray-Level Co-Occurrence Matrix), and DSM (Digital Surface Model) were generated using high-resolution UAV images performed object-based segmentation to detect collapsed buildings. The features were then used to detect candidates for collapsed buildings. In this process, a result of the change detection using PlanetScope were used together to improve detection accuracy. More specifically, the changed pixels acquired by the bitemporal PlanetScope images were used as seed pixels to correct the misdetected and overdetected areas in the candidate group of collapsed buildings. The accuracy of the detection results of collapse buildings using only UAV image and the accuracy of collapse building detection result when UAV and PlanetScope images were used together were analyzed through the manually dizitized reference image. As a result, the results using only UAV image had 0.4867 F1-score, and the results using UAV and PlanetScope images together showed that the value improved to 0.8064 F1-score. Moreover, the Kappa coefficiant value was also dramatically improved from 0.3674 to 0.8225.

A Comparartive Analysis on Techniques of Shadow Extraction in a Single High Resolution Image. (고해상도 단영상에서의 그림자 추출기법 비교)

  • Song, Woo-Seok;Byun, Young-Gi;Kim, Yong-Min;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.127-132
    • /
    • 2007
  • 위성영상 기술의 발달과 고해상도 위성영상의 해상도 규제가 완화됨에 따라 건물의 높이 정보를 획득하는데 있어 고해상도 위성영상의 그림자 정보를 이용하는 연구들이 활발히 수행되어지고 있다. 그림자 정보를 이용하여 건물 높이 정보를 획득하는 연구의 정확도를 높이기 위해서는 정확한 건물의 그림자 탐지가 선행되어야 한다. 따라서 본 논문에서는 단영상을 이용한 그림자 탐지기법인 임계값법(Thresholding), 영상분류법, 영역확장법(Region Growing)을 건물의 그림자 탐지에 적용하여 각 기법의 장단점과 정확도를 평가하였다. 영상에서 수동으로 건물의 그림자를 디지타이징한 참조 자료와 기법들을 적용하여 탐지한 결과 영상을 시각적으로 비교하였고, 오차행렬(Confusion Matrix)을 이용한 전체정확도(Accuracy), F-measure, AOR(Area Overlap Ratio)을 이용하여 정량적인 정확도평가를 수행하였다. 실험결과 영역확장법을 적용한 경우 시각적 정량적으로 가장 높은 정확도를 보였으며, 영상분류법을 적용한 경우 시각적으로는 임계값을 적용한 경우보다 좋은 결과를 보였으나 정량적으로는 가장 낮은 정확도를 보였다.

  • PDF

Object-based Building Change Detection from LiDAR Data and Digital Map Using Adaptive Overlay Threshold (적응적 중첩 임계치를 이용한 LiDAR 자료와 수치지도의 객체기반 건물변화탐지)

  • Lee, Sang-Yeop;Lee, Jeong-Ho;Han, Su-Hee;Choi, Jae-Wan;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • Because urban areas change rapidly, it is necessary to reflect urban changes in a digital map database in a timely manner. To address these issues, LiDAR data was used to detect changes in urban area buildings. The purpose of this study is to detect object-based building change using LiDAR data and existing digital maps, and classify change types. In the study, we classified change type using overlay and shape comparison with building layer of the digital maps and point-based extracted building outline from the LiDAR data. When applying the overlay method, we were able to increase the accuracy and objectivity of the change detection process throughout an adaptive threshold applied to each object. In the experiments, it was demonstrated that classifying and detecting changes in urban areas using the proposed method can provide superior classification accuracy compared with the existing methodology.

Building change detection in high spatial resolution images using deep learning and graph model (딥러닝과 그래프 모델을 활용한 고해상도 영상의 건물 변화탐지)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.227-237
    • /
    • 2022
  • The most critical factors for detecting changes in very high-resolution satellite images are building positional inconsistencies and relief displacements caused by satellite side-view. To resolve the above problems, additional processing using a digital elevation model and deep learning approach have been proposed. Unfortunately, these approaches are not sufficiently effective in solving these problems. This study proposed a change detection method that considers both positional and topology information of buildings. Mask R-CNN (Region-based Convolutional Neural Network) was trained on a SpaceNet building detection v2 dataset, and the central points of each building were extracted as building nodes. Then, triangulated irregular network graphs were created on building nodes from temporal images. To extract the area, where there is a structural difference between two graphs, a change index reflecting the similarity of the graphs and differences in the location of building nodes was proposed. Finally, newly changed or deleted buildings were detected by comparing the two graphs. Three pairs of test sites were selected to evaluate the proposed method's effectiveness, and the results showed that changed buildings were detected in the case of side-view satellite images with building positional inconsistencies.

A Study on the Effect of Building on the HF Direction Finding (방탐 국소 주변 건물에 의한 HF 대역 방향탐지 영향 연구)

  • Son, Byung-Kwon;Moon, Chang-Man;Lee, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.750-757
    • /
    • 2016
  • The effect of new building on the HF direction finding(DF) is analyzed. Commercially available software is used to get array manifold of the HF DF system. The terrain, building and the array antenna system are modelled. New building near the antenna system is also modelled to see whether it actually has an effect on the performance of the DF system. MUSIC and interferometer DF algorithms have been employed.

Building Change Detection Methodology in Urban Area from Single Satellite Image (단일위성영상 기반 도심지 건물변화탐지 방안)

  • Seunghee Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1097-1109
    • /
    • 2023
  • Urban is an area where small-scale changes to individual buildings occur frequently. An existing urban building database requires periodic updating to increase its usability. However, there are limitations in data collection for building changes over a wide urban. In this study, we check the possibility of detecting building changes and updating a building database by using satellite images that can capture a wide urban region by a single image. For this purpose, building areas in a satellite image are first extracted by projecting 3D coordinates of building corners available in a building database onto the image. Building areas are then divided into roof and facade areas. By comparing textures of the roof areas projected, building changes such as height change or building removal can be detected. New height values are estimated by adjusting building heights until projected roofs align to actual roofs observed in the image. If the projected image appeared in the image while no building is observed, it corresponds to a demolished building. By checking buildings in the original image whose roofs and facades areas are not projected, new buildings are identified. Based on these results, the building database is updated by the three categories of height update, building deletion, or new building creation. This method was tested with a KOMPSAT-3A image over Incheon Metropolitan City and Incheon building database available in public. Building change detection and building database update was carried out. Updated building corners were then projected to another KOMPSAT-3 image. It was confirmed that building areas projected by updated building information agreed with actual buildings in the image very well. Through this study, the possibility of semi-automatic building change detection and building database update based on single satellite image was confirmed. In the future, follow-up research is needed on technology to enhance computational automation of the proposed method.

Deep Learning Based Rescue Requesters Detection Algorithm for Physical Security in Disaster Sites (재난 현장 물리적 보안을 위한 딥러닝 기반 요구조자 탐지 알고리즘)

  • Kim, Da-hyeon;Park, Man-bok;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • If the inside of a building collapses due to a disaster such as fire, collapse, or natural disaster, the physical security inside the building is likely to become ineffective. Here, physical security is needed to minimize the human casualties and physical damages in the collapsed building. Therefore, this paper proposes an algorithm to minimize the damage in a disaster situation by fusing existing research that detects obstacles and collapsed areas in the building and a deep learning-based object detection algorithm that minimizes human casualties. The existing research uses a single camera to determine whether the corridor environment in which the robot is currently located has collapsed and detects obstacles that interfere with the search and rescue operation. Here, objects inside the collapsed building have irregular shapes due to the debris or collapse of the building, and they are classified and detected as obstacles. We also propose a method to detect rescue requesters-the most important resource in the disaster situation-and minimize human casualties. To this end, we collected open-source disaster images and image data of disaster situations and calculated the accuracy of detecting rescue requesters in disaster situations through various deep learning-based object detection algorithms. In this study, as a result of analyzing the algorithms that detect rescue requesters in disaster situations, we have found that the YOLOv4 algorithm has an accuracy of 0.94, proving that it is most suitable for use in actual disaster situations. This paper will be helpful for performing efficient search and rescue in disaster situations and achieving a high level of physical security, even in collapsed buildings.

Dense Siamese Network for Building Change Detection (건물 변화 탐지를 위한 덴스 샴 네트워크)

  • Hwang, Gisu;Lee, Woo-Ju;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.691-694
    • /
    • 2020
  • 최근 원격 탐사 영상의 발달로 인해 작지만 중요한 객체에 대한 탐지 가능성이 커져 건물 변화 탐지에 대한 관심이 높아지고 있다. 본 논문은 건물 변화 탐지 방법 중 가장 좋은 성능을 가진 PGA-SiamNet 의 세부 변화 탐지의 정확도가 낮은 한계점을 개선시키기 위해 DensNet 기반의 Dense Siamese Network 를 제안한다. 제안하는 방법은 공개된 WHU 데이터 세트에 대해 변화 탐지 측정 지표인 TPR, OA, F1, Kappa 에 대해 97.02%, 99.5%, 97.44%, 97.16%의 성능을 얻었다. 기존 PGA-SiamNet 에 비해 TPR 은 0.83%, F1 은 0.02%, Kappa 는 0.02% 증가하였으며, 세부 변화 탐지의 성능이 우수함을 확인할 수 있다.

  • PDF

건물의 R형 자동화재탐지설비 유지관리를 위한 평가 모델 개발

  • 유상빈;남양원;이수경
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.119-124
    • /
    • 1998
  • 방재에 있어서 화재의 초기감지가 얼마나 중요한 것인지를 우리는 잘 알고 있으나, 자동화재탐지설비에 대한 유지$\cdot$보수의 중요성에 대한 개념은 매우 미비하며, 이에 따른 연구도 빈약한 상태이다. 자동화재탐지설비는 건물내에 발생한 화재를 초기단계 즉 화재에 의하여 발생할 열 또는 연소생성물을 자동적으로 감지하고, 건물내의 관계자 및 거주자에게 음향장치에 의하여 화재의 발생을 알리는 설비이다. (중략)

  • PDF