• Title/Summary/Keyword: 건물일체형 태양광시스템

Search Result 58, Processing Time 0.025 seconds

A Study on the Reduction of Building Energy Consumption and Generation of BIPV System According to the Increase of the Number of Floors in Office Building (사무소건물 층수 증가에 따른 BIPV 발전량과 건물에너지소비량 저감에 관한 연구)

  • Oh, Myung-Hwan;Yoon, Jong-Ho;Shin, Woo-Cheol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.36-41
    • /
    • 2011
  • BIPV system that can alternate building envelope by making materials of PV module should be considered in initial design step for applying PV system efficiently in office building. Mean while, area of the building skin also increases as the number of floors increases, but the valid area that can apply BIPV system in effect decreases relatively. Despite of this weak point, installing BIPV system is still being evaluated as the only measure left that can reduce electronic energy consumption in the building. Therefore, the impact on building energy consumption according to the increase of the number of floors when BIPV system is applied in the building was analyzed. And it will be used as basic information for application of BIPV in office building. Conomic about application of BIPV is interpreted to be secured within the 10 story high. Forover the 11 floors, the methods of increasing the contribution ratio produced by BIPV system through the optimization of install angle and increase in install area of south, high efficiency should be considered. The ways to reduce basic load by integrated design with another renewable energy besides BIPV should be found. Later, the study on the total building energy comsumption with PV generation according to the various type of the basic load and ratio of the width and depth will be performed based on this study.

  • PDF

Power Performance Characteristics of Transparent Thin-film BIPV Module depending on an installation angle (건물일체형 투광성 PV모듈의 설치각도별 발전특성에 관한 연구)

  • Song, Jong-Hwa;Yoon, Jong-Ho;An, Young-Sub;Kim, Seok-Ge;Lee, Sung-Jin;Choung, Youn-Kyoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This study has analysed power output characteristics of transparent thin-film PV module depending on incidence angle and azimuth. The experiment results showed power outputs of transparent thin-film PV module applied to full-scale mock up model on slope of $90^{\circ},\;30^{\circ},\;0^{\circ}$ to the south. The simulation results was evaluated power outputs of transparent thin-film PV module depending on incidence angle and azimuth after calibrating the experimental and computed data. As a result. the best power output performance of transparent thin-film PV module was obtained at slope of $30^{\circ}$ to the south, producing the annual power output of 977kWh/kWp. The annual power output data demonstrated that the PV module with a slope of $30^{\circ}$ could produce a 68 % higher power output than that with a slope of $90^{\circ}$ with respect to the inclined slope of the module, Furthermore, the PV module facing south showed a 22 % higher power output than that facing to the east in terms of the angle of the azimuth, Specipically. the varying power output with incidence angle of PV module can be resulted from the influence of incidence angle modifier of glass on PV module. That is, the solar energy transmission can be reduced as an increase of incidence angle of PV module. Therefore, when the inclined slope of the PV module was over $70^{\circ}$ there was a significant reduction of power output, and this was caused by the decrease of solar energy transmission in the transparent thin-film PV module.

A Study on the Evaluation of Power Performance according to Temperature Characteristics of Amorphous Transparent Thin-Film (비정질 박막 투과형 태양전지모듈의 온도특성에 따른 발전성능 평가 연구)

  • An, Young-Sub;Song, Jong-hwa;Lee, Sung-jin;Yoon, Jong-ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.45-48
    • /
    • 2009
  • This study evaluated the influence of temperature on the PV module surface on power output characteristics, especially for an amorphous transparent thin-film PV module which was applied to a full-scale mock-up model as building integrated photovoltaic system. The tested mock-up consisted of various slopes of PV module, facing to the south. The annual average temperature of the module installed with the slope of $30^{\circ}$ revealed $43.1^{\circ}C$, resulting in $7^{\circ}C$ higher than that measured in PV modules with the slope of $0^{\circ}$and $90^{\circ}$ did. This $30^{\circ}$ inclined PV module also showed the highest power output of 28.5W (measured at 2 PM) than other two modules having the power output of 20.4W and 14.9W in the same time for $0^{\circ}$ and $90^{\circ}$ in the slope, respectively. In case of the $30^{\circ}$ inclined PV module, it exhibited very uniform distribution of power output generation even under the higher temperature on the module surface. Consequently, the surface temperature of the PV module analyzed in this study resulted in 0.22% reduction in power output in every $1^{\circ}C$ increase of the module surface temperature.

  • PDF

Development of a Rule-based BIM Tool Supporting Free-form Building Integrated Photovoltaic Design (비정형 건물일체형 태양광 발전 시스템 규칙기반 BIM설계 지원 도구 개발)

  • Hong, Sung-Moon;Kim, Dae-Sung;Kim, Min-Cheol;Kim, Ju-Hyung
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 2015
  • Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.

A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.

The Output Characteristics of 3kW BIPV System (건물일체형 태양광발전시스템의 실증분석)

  • Kim, Ji-Hoon;Jie, Bian Wen;Lee, Kang-Yeon;Kim, Pyoung-Ho;Oh, Geum-Gon;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.386-389
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. In case of PV(photovoltaic system) there are many generation differences according to the exterior environmental facts(solar cell array, design and installation condition of interactive inverter system). In this paper, we compared constitute factors of 3kW BIPV(solar cell module, inverter), operating characteristic and total system characteristic(utilization, generation efficiency, loss fact) and found out long time operating data using a watch instrumentations. By use of long time operating result, compare a totally operating characteristics, and we proposed a next building application of BIPV. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. The objective of this paper, is to provide a efficient BIPV design method through the considerations for the integration of PV system.

  • PDF

The Economic Feasibility of Building-Integrated Photovoltaics System Installed on the Roof of Residential Building - Focused on Comparison with Construction Cost of BAPV System Depend on Roof Finishing Materials

  • Oh, Byung-Chil
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • Purpose: This study was on the economic feasibility of BIPV system, focused on comparison with construction cost of BAPV system depend on roof finishing materials, and to suggest basic data on the construction cost. Method: Construction cost of BAPV system was calculated, by selecting asphalt single, flat type roof tile, color steel plate, titanium zinc plate as roof finishing material of residential building and by sum up each cost for roof finishing construction and cost for 3kWp-volumed PV module installation. Also, the economic feasibility was analysed quantitatively by comparing the cost for BIPV system construction, installing same volumed PV module instead of roof finishing materials. Result: 1. By installing BIPV system instead of the roof finishing material, the cost of construction falls ; about 19% in case of the titanium zinc plate, which is the most expensive, and about 11% in case of the color steel plate. 2. Reducing amount of the construction cost gets larger because of installing BIPV module instead of the roof finishing material, as the construction cost for roof finishing material gets higher ; therefore, it is more economical than BAPV system in terms of whole cost of construction.

The Simplified Pre-Estimation Model Development of a BIPV Generation Rate by the District Division (지역 구분을 통한 약식 BIPV 발전량 예측 모델 개발)

  • Choi, Won-Ki;Oh, Min-Seok;Shin, Woo-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.19-29
    • /
    • 2016
  • Whilst there are growing interests in pursuing energy efficiency and zero-energy buildings in built environment, it is widely recognised that Building-Integrated Photovoltaic (BIPV) is one of the most promising and required technologies to achieve these goals in recent years. Although BIPV is a broadly utilized technique in variety of fields in built environments, it is required that generation of BIVP should be analysed and calculated by external specialists. The aim of this research is to focus on developing a new diagram for prediction of the pre-estimation model in early design stage to harness solar radiation data, PV types, slopes, azimuth and so forth. The results of this study show as follows: 1) We analysed 162 districts in a national level and the examined areas were categorised into five zones. The standard deviation of the results was 2.9 per cent; 2) The increased value of solar radiation on a vertical plane in five categorised zones was 42kWh/m3, and the result was similar to the average value of 43.8kWh/m3; and 3) The pre-estimation of diagram was developed based on the categorisation of zones and azimuth as well as the results of the developed diagram showed little difference compared to the previously utilised method. The suggested diagram in this paper will contribute to estimate BIPV without any external contribution to calculate the value. Even though the result of this study shows little difference, it is required to investigate a number of different variables such as BIPV types, modules, slope angle and so forth in order to develop an integrated pre-estimation diagram.